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ABSTRACT

The Cerrado biome, rich in biodiversity and naturally fire-dependent, has experienced
a significant increase in wildfires driven by human activities, negatively impacting its
ecosystems. This study investigates the relationship between wildfire occurrence and
road proximity in the central region of the Cerrado, focusing on the states of Goiás
and Tocantins, using Sentinel satellite imagery and fire hotspot data from OroraTech.
Fire data were analyzed for the months of October and November, a transitional period
between the dry season and the onset of rainfall, allowing the assessment of fire events
even under climatic conditions less favorable to natural combustion.

Themethodology included Principal Component Analysis (PCA) and ensemble learn-
ing techniques combining Random Forest, Decision Tree, Multilayer Perceptron (MLP),
and K-Nearest Neighbors (KNN). The ensemblemodel achieved an accuracy of 84.41%,
precision of 66.15%, recall of 45.26%, and an F1-score of 53.75%. The segmented
analysis indicates that road infrastructure may be associated with different fire dynam-
ics: on dry days, it is more closely related to fire spread, whereas on humid days it
shows a stronger association with ignition patterns. The results suggest that, even un-
der less favorable climatic conditions, fire hotspots remain concentrated near roads and
within forested areas, indicating anthropogenic influence and potential relationships be-
tween road presence and land use and land cover changes. This study contributes to
strategic monitoring and wildfire prevention efforts in the Cerrado region.

Keywords: Cerrado biome; Wildfires; Road infrastructure; Anthropogenic
influence; Machine learning; Remote sensing.

vi



RESUMO

O bioma Cerrado, rico em biodiversidade e naturalmente dependente do fogo, enfrenta
um aumento significativo de incêndios florestais impulsionado por atividades humanas,
causando impactos negativos sobre seus ecossistemas. Este estudo investiga a re-
lação entre a ocorrência de incêndios florestais e a proximidade de estradas na região
central do Cerrado, com foco nos estados de Goiás e Tocantins, utilizando imagens
dos satélites Sentinel e dados de focos de calor da OroraTech. Os dados de incêndio
foram analisados para os meses de outubro e novembro, período de transição entre a
estação seca e o início das chuvas, permitindo a avaliação de eventos de fogo mesmo
sob condições climáticas menos favoráveis à combustão natural.

A metodologia incluiu a Análise de Componentes Principais (PCA) e técnicas de
aprendizado de máquina baseadas em ensemble learning, combinando Random For-
est, Árvore de Decisão, Multilayer Perceptron (MLP) e K-Nearest Neighbors (KNN). O
modelo ensemble apresentou desempenho de 84,41% em acurácia, 66,15% em pre-
cisão, 45,26% em recall e 53,75% em F1-score. A análise segmentada indica que a
infraestrutura viária pode estar associada a diferentes dinâmicas dos incêndios: em
dias secos, observa-se maior relação com a propagação do fogo, enquanto em dias
úmidos há associação mais forte com padrões de ignição. Os resultados sugerem que,
mesmo sob condições climáticas menos favoráveis, os focos de incêndio permanecem
concentrados em áreas próximas às estradas e em regiões florestais, evidenciando a
influência antrópica e possíveis relações entre a presença de estradas e alterações
no uso e cobertura do solo. Este estudo contribui para o monitoramento estratégico e
para ações de prevenção de incêndios florestais na região do Cerrado.

Palavras-chave: Satellite imagery, machine learning, forest fires, road
infrastructure, Cerrado biome, remote sensing.
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1
INTRODUCTION

Recognized as one of the most biodiverse savannas on the planet, the Cerrado is
a biome (Figure 1) whose ecology has been shaped by the presence of fire for at least
4 million years. The native vegetation presents remarkable morphological and physi-
ological adaptations that confer resilience to natural fires. However, the contemporary
scenario is marked by a new dynamic: fires of anthropogenic origin. These events
represent a severe negative impact on local ecosystems, as they differ from the natu-
ral fire regime by occurring at unfavorable times of the year, with greater intensity and
duration, putting biodiversity at risk [23].

Figure 1: Location map of the Cerrado biome in Brazil. Source: [1]
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Table 1: Approximate area of Brazilian biomes

Biome Approximate Area (km2) Proportion of National
Territory

Amazon 4,196,943 km2 About 49.29%

Cerrado 2,036,448 km2 About 22% to 24%

Atlantic Forest 1,107,419 km2 About 29% of the original cover

Caatinga 844,453 km2 About 11%

Pampa 178,243 km2 2.07%

Pantanal 150,900 km2 1.76%

Source: Adapted from [24,25].

The analysis of Table 1, which outlines the Brazilian biomes, reveals a counterintu-
itive scenario regarding the impact of fire. Although the Amazon is the largest national
biome, with more than twice the area of the Cerrado, it is the latter that leads in total
burned area. The disparity is notable: data indicate that between 2003 and 2017, the
Cerrado had 2,685,596 km² affected by fire, almost double the 1,382,264 km² recorded
in the Amazon during the same period [25]. This seasonal dynamic, which reaches its
peak in September [25], coincides with the dry months, when low humidity increases
the frequency and intensity of fire in the biome [26].

The expansion of the agricultural frontier intensifies this pressure on the biome. The
Cerrado, which covers approximately 23% of the national territory, has already had
nearly half of its original vegetation converted into pastures, monocultures, and other
anthropogenic uses, severely compromising its biodiversity [27]. Since the 1970s, the
biome has become the main hub of food and commodity production in Brazil, driven
by factors such as favorable climate, flat terrain, and low land costs, which have at-
tracted farmers from other regions, especially from the South [28]. Vast areas were
converted for soybean, corn, cotton, and sugarcane cultivation—soybean being partic-
ularly notable [29]—a practice that requires complete removal of native vegetation and
intensive use of soil-correction inputs and pest control [30].

In this context of landscape transformation, fire emerges as a fundamental tool for
land-use and land-cover change. It is systematically used in agricultural management,
mainly in the burning of felled biomass to prepare land for agriculture and livestock
[24]. This cultural practice of using fire to clear pastures and cropland may, however,
result in uncontrolled fires that spread devastatingly [31]. Burning to eliminate woody
material after deforestation and for pasture renewal is common and contributes to soil
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degradation [32].
The environmental impacts resulting from deforestation and fires trigger a cascade

of damages. Habitat loss, fragmentation, and degradation profoundly alter population
dynamics and the distribution of native species [33]. Fire not only consumes organic
matter on the surface but also affects soil structure and vegetation, potentially leading to
total destruction or compromising future development [26]. Combustion releases heat,
nutrients, and various chemical by-products into the environment [34].

In addition to ecological damage, the smoke generated represents an increasing
threat to global public health. Its emissions contain a complex mixture of pollutants,
such as particulate matter, carbon monoxide, and nitrogen oxides. Inhaling these sub-
stances can cause oxidative stress, inflammatory responses, reduced lung capacity,
and immune system suppression. Smoke plumes, transported over long distances,
deteriorate air quality in regions far from the original source. The effects transcend
physical health, with reports of mental disorders such as depression and post-traumatic
stress disorder in affected populations. Reduced visibility caused by smoke also sig-
nificantly increases the risk of traffic accidents [35].

Road infrastructure, particularly highways, plays a catalytic role in this cycle of defor-
estation and fire by facilitating the expansion of the agricultural frontier through access
to new areas [30]. The presence of a dense road network is associated with a higher
risk of ignitions caused by human activity [32]. The construction of new roads in forested
areas frequently indicates ongoing logging activity and signals the intention to convert
that land to other uses [33].

Investigating this spatial association between roads and fires can provide crucial
support for planning prevention and mitigation strategies. By mapping ignition points
near the road network, it is possible to delineate and visualize the most vulnerable
segments [32]. The knowledge generated by this correlation allows for the efficient and
prioritized allocation of monitoring and inspection efforts, concentrating resources in
high-risk areas. Such an approach enhances firemanagement, since agility in detection
and localization is a key factor for reducing damage and optimizing operational costs
[32].

Agile and effective fire detection and monitoring are therefore essential to con-
tain fire spread [23]. Continuous monitoring is indispensable for mitigating impacts on
ecosystems and for generating data to support public policies for prevention and fire-
fighting. In addition, mapping the location and extent of burned areas enables the cre-
ation of thematic maps that help identify high-risk zones and plan strategic actions [25].

Since the 1970s, remote sensing has consolidated itself as the main technology for
monitoring natural resources. Currently, satellite-based thermal hotspot detection is
the most widespread method. The National Institute for Space Research (INPE), for
example, automatically processes more than 200 daily images from ten different satel-
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lites, using sensors in the mid-infrared band to identify burning vegetation points across
Brazil [32]. Automation in fire detection, driven by modern technologies, emerges as an
alternative to the limitations of traditional methods, such as watchtowers, which entail
high costs, low efficiency, and risks to operators [25].

The effectiveness of these automated systems lies in their ability to intelligently in-
terpret remote-sensing data. Through sophisticated algorithms, it is possible to go be-
yond simple heat detection, broadly analyzing the landscape to differentiate types of
land cover and identify with high precision the transformations caused by fires or defor-
estation [23,24,33].

Given the clear connection between human expansion, roads, and fire in the Cer-
rado, it becomes essential to go beyond observation and provide concrete data to sup-
port decision-making. This study arises from the need to transform this perception into
practical knowledge. The goal is to use data analysis technologies to map and quan-
tify this influence, offering an accurate diagnosis to support more effective prevention
policies and the intelligent management of one of the world’s most threatened biomes.

1.1 OBJECTIVES

1.1.1 General Objective
To evaluate the influence of proximity to roads as a risk factor for the occurrence of

wildfires in the Cerrado, using a method based on remote sensing data and machine
learning to quantify this relationship.

1.1.2 Specific Objectives

• OE(1) Gather and preprocess geospatial databases related to hotspots or fires
and the road network of the Cerrado biome for the study period;

• OE(2) Categorize fire events based on the Angström Index, segregating the data
into different climatic risk scenarios to assess fire behavior under conditions of
greater and lesser natural favorability to propagation;

• OE(3) Statistically analyze the correlation between road density and hotspot in-
tensity, comparing the strength of this association under different meteorological
conditions;

• OE(4) Develop a machine-learning classification model to evaluate the impor-
tance of the variable “proximity to roads” in predicting fire risk;

• OE(5) Investigate the distribution of burned areas through the association be-
tween road infrastructure and different types of land use and land cover (forest,
agriculture, or pasture).
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2
LITERATURE REVIEW

2.1 THE ROLE OF REMOTE SENSING AND ITS CHALLENGES
Remote sensing is a fundamental tool for wildfire monitoring and land-use change

detection, enabling periodic surveys of large territorial extensions and rapid assessment
of the damage caused by events such as forest fires [36]. It contributes to resource
optimization and more effective information management [37].

In the context of wildfires, remote sensing allows the monitoring of fire dynamics
and the observation of burned areas shortly after the event [38]. Rapid and accurate
damage assessment is essential for developing appropriate mitigation measures [36].
At the same time, remote sensing is crucial for mapping road networks, which are es-
sential infrastructure elements [39].

Moreover, it employs different types of data, such as optical (visible, near-infrared,
and shortwave infrared) and thermal imagery [37]. However, this technology faces
significant limitations, including cloud cover, which may hinder systematic image ac-
quisition — although new satellite systems in orbit seek to mitigate this issue in tropical
regions [39].

Detecting small objects or those with few attributes remains a challenge [40], espe-
cially under conditions with distortions or noise [41]. Therefore, preprocessing steps are
necessary to enhance subtle features [40]. Complexity further increases when work-
ing with historical data, where detailed atmospheric information is rarely available for
sophisticated correction models [42].

Themapping of roads and the identification of objects, especially small ones, present
significant challenges due to the environmental complexity. Achieving accurate detec-
tion requires the continuous application of advanced techniques and the improvement
of existing models [40]. Several factors contribute to the difficulty of this task:

The automatic detection of roads in satellite images faces various technical chal-
lenges that directly impact algorithm accuracy. One major obstacle lies in the spectral
and spatial similarity among different anthropogenic structures, where the charac-
teristics of buildings and urban roads often overlap, making their discrimination diffi-
cult [40].

Additionally, occlusion and visual noise compromise data integrity: vegetation,
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shadows cast by buildings, and moving elements such as vehicles generate false pos-
itives and interrupt the continuity of linear features [40]. These artifacts become partic-
ularly critical in dense urban areas, where scenario complexity demands robust filtering
methods.

Variable environmental conditions also represent a significant limiting factor. So-
lar illumination—dependent on time of day, season, and atmospheric conditions—drastically
alters the radiometric properties of surfaces [43]. This variability makes color-based at-
tributes unreliable, requiring the use of illumination-invariant characteristics.

The intrinsic quality of images also imposes important constraints. Limitations
in spatial resolution, geometric distortions, motion blur, and digital compression are
exacerbated in dynamic acquisition conditions or with low-cost equipment [43]. These
factors combine to produce data with considerable noise, demanding prior correction
steps.

To overcome these obstacles—especially for extracting road networks from aerial
images—image processing techniques are essential [44]. Image analysis and process-
ing, particularly in domains such as remote sensing, rely on a series of enhancement
methods. Resizing, normalization, and noise removal are crucial steps to optimize vi-
sual data quality for subsequent analyses, such as change detection or pattern recog-
nition.

2.2 IMAGE PROCESSING TECHNIQUES

2.2.1 Normalization
Min-Max normalization is a technique used to rescale reflectance values of a band

to a standard range, such as 0–255. It is commonly used as a preprocessing step in
remote sensing imagery. The purpose of this normalization is to adjust the distribution
of pixel values to a uniform range, facilitating comparison between different bands or
images [37].

xnorm =
x− xmin

xmax − xmin
[37] (1)

Where:

• x is the original pixel value;

• xmin is the smallest value in the band dataset;

• xmax is the largest value in the band dataset;

• xnorm is the resulting normalized value.

In summary, normalization is a set of techniques with the common goal of stan-
dardizing or correcting image data. The approaches differ in mathematical complexity
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and the factors they aim to correct, whether radiometric, illumination-related, or merely
value scaling.

Beyond pixel-value standardization, another crucial preprocessing step is noise re-
moval. This process aims to enhance the visual quality of the image and prepare it for
subsequent analyses, such as feature detection or object recognition [45].

2.2.2 Gaussian Filter
Noise may arise from several factors, including capture conditions (illumination, mo-

tion) or sensor failures, manifesting as undesired variations that obscure important de-
tails [46]. Noise removal techniques seek to attenuate these variations while preserving
essential image characteristics as much as possible. Among various approaches, the
Gaussian filter is one of the most fundamental and widely used methods for this pur-
pose [45].

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 [45] (2)

Where:

• (x, y) represent the pixel coordinates relative to the center of the filter;

• σ is the standard deviation, a key parameter that controls the degree of smoothing.
Larger σ values result in stronger blurring and more aggressive noise removal
[47].

Essentially, the Gaussian filter acts as a low-pass filter, smoothing fine details and
high-frequency variations typically associated with image noise.

2.2.3 Histogram
In the field of image processing, the histogram of an image is a fundamental graph-

ical representation of the frequency distribution of pixel intensity values (gray levels or
colors). For a discrete digital image, the histogram shows how often each intensity level
occurs. This representation is crucial to understanding visual characteristics such as
contrast, brightness, and the predominance of dark or bright tones [44].

A well-distributed histogram covering the entire dynamic intensity range generally
indicates an image with good contrast. On the other hand, histograms concentrated
in narrow regions—whether low values (dark images) or high values (bright images)—
signal low contrast and potential loss of detail [44].

In the context of burned-area detection, images of burned forests exhibit low re-
flectance values in the near-infrared and high values in the shortwave infrared, while
intact forests show low red-band values. Histogram analysis can reveal these differ-
ences [37].

2.2.4 Sobel Filter
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The Sobel Filter is a fundamental tool for edge detection in images, estimating spa-
tial gradient magnitude through changes in amplitude along borders [48]. The gradient
magnitude S is defined by:

S =
√

S2
x + S2

y [48] (3)

where Sx and Sy represent the gradients in the horizontal and vertical directions,
respectively [48].

Figure 2: Application of the Sobel filter, highlighting image edges [2].

2.3 COLOR SPACES FOR IMAGE ANALYSIS

2.3.1 RGB
The RGB color model, which represents the additive primary colors Red, Green,

and Blue, is widely used and fundamental for conversion into other color spaces [49].
Methods relying on visible bands (RGB) may struggle to distinguish burned areas

from other landscape features, especially in urban areas, where pixel-value differences
are subtle, and burned forests may not be clearly distinguishable [36].

The RGB model is highly sensitive to noise at low intensities due to its nonlinear
transformation and has poor correlation with human color perception, as it does not
separate luminance information. This can negatively impact detection in environments
with illumination variations—a common challenge in satellite imagery [49].
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Figure 3: Representation of the RGB color space [3].

2.3.2 HSV
The HSV (Hue, Saturation, Value) color space is a nonlinear transformation of RGB

and is described in a cylindrical coordinate system.
HSV is easily interpreted by humans because it aligns with how we perceive col-

ors. It separates chromatic components (Hue and Saturation) from the achromatic
component (Value), allowing color information to be treated independently from bright-
ness [49].

The HSI/HSV transformation is popular in detection tasks, and one of its main ad-
vantages is having only two components (hue and saturation) closely related to human
perception and more resistant to illumination changes [43].

Figure 4: Representation of the HSV color space [4].

2.3.3 LAB
The Lab color space is a uniform color space, meaning numerical distances between

colors correspond directly to perceived color differences. It represents luminance with
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values from 0 (black) to 100 (white). The components a* (red/green) and b* (blue/yel-
low) represent chromaticity [49].

Chromaticity differences can be computed using Euclidean distance, as hue varia-
tions are linear in this space. This makes it ideal for detecting small color differences.
Moreover, Lab handles shadows and illumination variations more effectively [49], which
is essential for real-world image analysis. The HSV space also provides good segmen-
tation results, with higher accuracy than RGB [49].

Figure 5: Representation of the Lab color space [5].

The formula for the three-dimensional Euclidean distance, used to measure color
differences, is expressed in Equation 4:

d(p, q) =
√
(xp − xq)2 + (yp − yq)2 + (zp − zq)2 [49] (4)

2.3.4 NDVI — Normalized Difference Vegetation Index
The Normalized Difference Vegetation Index (NDVI) is one of the most widely used

indicators in remote sensing for assessing vegetation health and vigor [50]. It is calcu-
lated from the reflectance of the Near-Infrared (NIR) and Red (RED) bands, producing
values ranging from -1 to +1. Positive values close to 1 indicate dense and healthy veg-
etation, while values near zero correspond to bare soil or sparse vegetation. Negative
values generally represent non-vegetated surfaces such as water or urban areas. Due
to its simplicity and efficiency, NDVI is widely used in environmental studies, including
vegetation damage assessment. Burned areas typically show a significant decrease in
NIR and Red reflectance [51].

NDV I =
NIR−Red

NIR +Red
[51] (5)
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Figure 6: Comparison between the RGB image and the NDVI index [6].

WhereNIR represents the near-infrared band andRed the red band. Its applications
include forest and soil moisture monitoring, land-cover change detection, burned-area
identification, and natural disaster analysis [52].

2.3.5 NGRDI
The NGRDI is obtained from the values of the green (G) and red (R) bands, and is

calculated using the following expression:

NGRDI = G−R

G+R
[53] (6)

The NGRDI is frequently employed in the evaluation of vegetation characteristics,
such as vegetation coverage, leaf area index, and chlorophyll concentration present in
plants [53].

Vegetation indices are widely used as explanatory variables in models for estimating
agricultural productivity, as they synthesize information related to vigor, density, and
physiological state of vegetation. Among them, NGRDI stands out, as it can be applied
even when only images from the visible spectrum are available. Its use in agricultural
models and in vegetation evaluation studies is reported in [54].

NGRDI is calculated exclusively from RGB bands, making it a relevant alternative
in situations where access to near-infrared bands is unavailable, which are necessary
for calculating indices such as NDVI. Several studies highlight its potential to enhance
vegetated areas and contribute to the identification of vegetation coverage in different
contexts. However, because it depends only on the visible spectrum, NGRDI tends to
present lower sensitivity when compared to indices that incorporate additional bands,
especially in environments with high spectral variability [50,53].

2.3.6 Machine Learning Techniques
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2.3.7 KNN
The K-Nearest Neighbor (KNN) algorithm, or Nearest Neighbor, is a supervised

learning technique widely used for classification tasks [55]. Its basic principle consists
of assuming that samples with similar attributes tend to belong to the same class. To
classify a new point, the method identifies the k nearest neighbors in the training set
using a distance metric, usually Euclidean distance. The class assigned to the new
point is the one that occurs most frequently among these neighbors [56].

Despite its simplicity, KNN presents some limitations. It is sensitive to the choice
of the parameter k, which directly influences model performance, and does not handle
categorical variables or missing data well [55]. In practical applications, appropriate
selection of k and prior data treatment are essential to ensure good accuracy [57].

Figure 7: Representation of data grouping into classes using the KNN algorithm [7].

2.3.8 Decision Trees
Decision trees are classification algorithms that operate by creating decision rules

based on data characteristics [45]. Each node of the tree corresponds to a characteristic
and a decision threshold, and the path from the root to a leaf node represents a series
of decisions based on the values of these characteristics [58]. Nodes are split based on
impurity criteria to createmore homogeneous data subsets. Themost common impurity
functions include Entropy and the Gini Index. The goal is to maximize information gain
at each split [59].

The Gini Index is an impurity measure widely used to evaluate splits in Decision
Trees [57]. It represents the probability of a sample being classified incorrectly if la-
beled randomly. During training, the selected split is the one that produces the smallest
impurity value, resulting in purer nodes [60].

The Gini value ranges from 0 to 1, where values close to 0 indicate total purity and
values close to 1 indicate great disorder. The Gini Index for a set S is defined by:
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Gini(S) = 1−
n∑

i=1

p2i [60] (7)

where pi is the proportion of samples belonging to class i. This measure guides the
splitting process and contributes to the construction of more interpretable and effective
trees.

Figure 8: How a decision tree works, where each node represents an evaluated con-
dition [8].

Overfitting occurs when a model learns excessively the details and noise of the
training set. Instead of capturing general patterns, the model ends up incorporating
anomalies or random fluctuations that are not representative of the real distribution of
the data [59]. This results in a model that performs excellently on the training set but
fails when applied to new data, generating low accuracy or high error rates in tests [61].

2.3.9 Random Forest
The Random Forest (RF) is a non-parametric supervised learning algorithm that

belongs to the family of ensemble methods. It works by combining multiple Decision
Trees, so that the final result is more robust and generalizable than that of a single
tree [57]. This approach seeks to reduce overfitting and improve predictive performance
in complex problems.

During the training process, RF uses two fundamental strategies. The first is boot-
strap sampling, in which each tree is built from data subsets generated with replace-
ment. The second strategy consists of aggregating predictions: for classification tasks,
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the final class is assigned by majority vote of the trees; for regression, the average of
the generated predictions is used.

Figure 9: Representation of how the Random Forest algorithm works as a combination
of several decision trees [9].

Despite these advantages, RF presents important limitations. Among them are the
higher computational cost compared to simpler models, the difficulty of interpretation
due to the large number of trees involved, and reduced performance in applications
requiring real-time processing [62]. These models can memorize specific details of the
training set (Overfitting) [59]. To mitigate this, trees are initially expanded excessively
and then pruned to a smaller size, minimizing an estimate of the classification error [63].
Decision trees are also sensitive to outliers and can be easily influenced by noisy data,
which leads to inaccurate predictions [64].

Figure 10: Comparison between a Decision Tree model and a Random Forest model
[10].

Still, it remains one of the most widely used approaches in supervised problems due
to the combination of conceptual simplicity and high practical performance [60].
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2.3.10 Deep Learning Architectures
The Multilayer Perceptron Neural Network (MLP - Multilayer Perceptron) is an im-

portant architecture within the field of artificial neural networks (ANNs) and deep learn-
ing [65].

An MLP is a type of feedforward neural network. This means that numerical input
signals enter through the input layer, propagate through the intermediate layers to the
right, and exit through the output layer. Information flows in a single direction, without
cycles [66].

Figure 11: Representation of how an Artificial Neural Network works [11].

• Input Layer: It is the first layer of the network and is responsible for receiving raw
input data [43].

• Hidden Layers: Located between the input and output; MLPs have one or more
of them and process information hierarchically [43].

• Output Layer: It is the final layer of the network and produces the result of the
processing, such as data classification or value prediction [43].

The functioning of each neuron in an artificial neural network follows a structured
mathematical process. Initially, the neuron receives multiple numerical signals from the
input layer or from neurons in the previous layer. Each of these signals is multiplied by a
specific synaptic weight, which determines the strength and type of influence (excitatory
or inhibitory) of the connection.

Subsequently, the weighted sum of all inputs is calculated, where each signal is
multiplied by its respective weight before aggregation. This operation, called linear
combination, produces the net input value (z) of the neuron, as expressed by the equa-
tion:
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z =
n∑

i=1

wixi + b [67] (8)

Where:

• xi represents the neuron’s inputs;

• wi are the weights associated with each input xi;

• b is the bias term, a constant learned along with the weights;

• Σ denotes the sum of all products (wi · xi).

The result z is then passed through an activation function, represented by ϕ or f .
This function is fundamental because it introduces nonlinearity to the model, allowing
the MLP to learn and represent complex patterns that a linear model could not. The
final output of the neuron, a = ϕ(z), becomes the input to the next layer [67].

• ReLU (Rectified Linear Unit): Defined as f(x) = max(0, x), acting as an identity
function for positive values and nullifying negative inputs. It is widely used due to
its computational simplicity and effectiveness in mitigating the vanishing gradient
problem [68].

2.4 PRINCIPAL COMPONENT ANALYSIS
Principal Component Analysis (PCA) is a statistical and machine learning tech-

nique widely used for dimensionality reduction. Its main objective is to transform a
dataset with many variables into a new set with fewer variables, known as principal
components, preserving as much as possible of the original data variance [43].

Figure 12: Representation of Principal Components (PCA) and the dimensionality re-
duction process [12].

PCA (Principal Component Analysis) transforms the original characteristics of a
dataset into new uncorrelated variables, called principal components. These compo-
nents are ordered so that the first ones capture most of the variance, preserving the
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most relevant information. In high-dimensional data, where correlated features can
impair model performance, PCA efficiently reduces dimensionality, compressing the
dataset with minimal loss of significant information and improving computational effi-
ciency [43].

In the domain of image recognition, Principal Component Analysis (PCA) is widely
employed as a preprocessing technique for high-dimensional datasets, allowing the
compression of visual information without significant loss of relevant content [69]. A
specialized variant, Local PCA, has proven particularly effective in processing colored
images, adapting to the regional characteristics of the scene.

The study by [43] demonstrates that dimensionality reduction through PCA, when
integrated with feature selection methods, establishes a synergy that significantly en-
hances the performance of MLP (Multilayer Perceptron) networks. This combined ap-
proach not only mitigates problems related to the curse of dimensionality but also con-
tributes to accelerating the training process and improving the generalization capacity
of the models.

2.5 COMPLEMENTARY TECHNIQUES

2.5.1 Ensemble Learning
Ensemble Learning is a powerful and widely used approach in machine learning.

Its fundamental principle consists of combining the predictions of multiple models to
obtain overall performance superior to that of any individual model. By uniting different
hypotheses, the ensemble exploits the particular strengths of each classifier, reducing
errors, mitigating biases, and increasing system robustness [59].

Improving performance and generalization: the combination of diverse models
tends to reduce prediction error, resulting in higher accuracy and better generalization
capacity, especially in complex scenarios or those with noise [59]. Models such as neu-
ral networks present excellent capacity to model nonlinear relationships, while modern
optimizers such as Adam accelerate and stabilize the training process [45]. Tree-based
methods provide interpretability and robustness [58]. Simple algorithms such as k-NN
work effectively in similarity-based classifications [70]. The combination of these tech-
niques forms more resilient systems adapted to different forms of data [58].

Bagging is an ensemble technique that trains multiple models (often decision trees)
on different subsets of the dataset, generated by sampling with replacement. Each
model is trained independently, and the final prediction is obtained by averaging (re-
gression) or by majority vote (classification) [71]. Boosting, on the other hand, trains
models sequentially, so that each new classifier corrects the errors of the previous one,
resulting in a strong and stable classifier [59].

In the figure below we can see the comparison of the two techniques:

19



Figure 13: Example of Ensemble Learning combining different classification techniques
[13].

2.5.2 AdaBoost Algorithm
The Adaptive Boosting (AdaBoost) is one of the most influential algorithms in the

Boosting family. Its central objective is to transform weak classifiers into a strong clas-
sifier through an iterative and adaptive process [48,72].

The functioning of AdaBoost can be summarized in two main ideas:

• Adaptive weighting of examples: Initially, all training examples receive the
same weight. At each iteration, the algorithm increases the weights of incor-
rectly classified samples and reduces the weights of correctly classified samples.
This mechanism forces the next classifier to concentrate its learning on the most
difficult examples [59].

• Weighted combination of classifiers: Each weak classifier trained produces
a prediction and receives a weight proportional to its performance. Classifiers
with lower error rates receive greater weight in the final prediction. Thus, the final
classifier is a weighted combination of individual decisions [48].

Ensemble Learning is a powerful and widely used approach in machine learning.
Its fundamental principle consists of combining the predictions of multiple models in
order to obtain overall performance superior to that of any individual model. By uniting
different hypotheses, the ensemble exploits the particular strengths of each classifier,
reducing errors, mitigating biases, and increasing system robustness [59].

Improving performance and generalization: the combination of diverse models
tends to reduce prediction error, resulting in higher accuracy and better generalization
capacity, especially in complex scenarios or those with noise [59]. Models such as
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neural networks present excellent capacity to model nonlinear relationships [45], while
modern optimizers such as Adam [73] accelerate and stabilize the training process.
Tree-basedmethods provide interpretability and robustness [58], and simple algorithms
such as k-NN work effectively in similarity-based classifications [70]. The combination
of these techniques formsmore resilient systems adapted to different forms of data [58].

2.5.3 Otsu’s Method for Thresholding
Otsu’sMethod is a classical automatic thresholding technique used to convert grayscale

images into binary images. It is a non-parametric and unsupervised method because
it determines the ideal threshold directly from the image histogram without the need for
manual adjustments [74].

Its objective is to find the threshold value that best separates pixels into two classes:
background and objects. To do this, the algorithm tests all possible thresholds and
selects the one that maximizes class separation (interclass variance), indicating the
best distinction between light and dark regions of the image [75].

After the threshold is selected, the image is binarized: pixels with intensity greater
than or equal to the threshold become white, while the others become black. The
method works best on images with bimodal histogram, although it may present limita-
tions in low-contrast scenarios or complex distributions [76].

Figure 14: Application of Otsu’s method for automatic threshold definition [14].

2.5.4 Image Skeletonization
Skeletonization is an image processing technique that operates on binary images,

having been implemented in the work of [77]. Thismethod consists of a thinning process
that progressively reduces the lines of a binary image until they reach the thickness of
a single pixel, resulting in the extraction of the skeleton of the original image.

The main advantage of the skeletonization process, as demonstrated in the mo-
bile solution for wound analysis, lies in its ability to reduce the complexity of the image
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representation while maintaining structural information relevant for subsequent mor-
phometric analyses [77].

Figure 15: Skeletonization produced from the morphological transformation applied to
the image [15].

2.5.5 Pearson Correlation Coefficient
The Pearson Correlation Coefficient (r) is a measure of linear association between

quantitative variables that measures the direction and degree of the linear relationship
between two variables [78]. The coefficient is based on the standardization of obser-
vations and on the sum of the cross product of standardized values of variables X and
Y .

The formula of the coefficient is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy
[78] (9)

where:

• xi and yi are the individual observations of variables X and Y

• x̄ and ȳ are the means of variables X and Y , respectively

• sx and sy are the sample standard deviations of variables X and Y

• n is the number of observations

The Coefficient of Determination (R2), derived from r, represents the proportion of
variance shared between the variables.

The value of r varies in the interval [−1, 1]:
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• Direction: The sign indicates positive (r > 0) or negative (r < 0) relationship

• Magnitude: The strength of the linear relationship follows the Dancey and Reidy
classification [78]:

– 0.10 ≤ |r| ≤ 0.30: weak correlation

– 0.40 ≤ |r| ≤ 0.60: moderate correlation

– 0.70 ≤ |r| ≤ 1.00: strong correlation

• r = 0: indicates absence of linear relationship

• |r| = 1: perfect linear correlation

Figure 16: Scatter plot showing positive correlation between two variables [16].

2.5.6 Spearman Correlation Coefficient
The Spearman Coefficient (ρ) is a statistical tool that assesses the extent to which

as one variable increases, the other tends to follow in a specific direction. Its main dif-
ference is that, instead of calculating using exact values, it uses the position or ranking
of each data point, eliminating the need for data to follow a perfect distribution [79]. Due
to this flexibility, it is the ideal method for analyzing data that possess a general growth
trend, even if this relationship does not form an exact straight line [80].

The calculation of the coefficient is based on the difference between the ordered
positions of each pair of observations. The formula is defined by Equation 10:

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
[80] (10)

where:
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• di represents the difference between the ranks of the corresponding variables;

• n is the number of observation pairs (sample size).

The interpretation of the result varies from -1 to +1, where positive values indicate a
direct correlation and negative values an inverse correlation. Magnitude between 0.75
and 1.0 suggests a strong to excellent correlation [81].

2.5.7 Calculation and Interpretation of the Ångström Index
The Ångström Index is an empirical fire danger indicator widely used in forest fire risk

assessment studies [82]. It combines atmospheric temperature and relative humidity
to estimate the favorability of environmental conditions for fire ignition and spread [83].

B =
U

20
+

27− T

10
[82] (11)

where:

• T : Air temperature in degrees Celsius;

• U : Relative humidity of the air in percentage.

Physical interpretation:
TheÅngström Index reflects the combined influence of temperature and atmospheric

moisture on fire risk:

• The term 27−T
10

represents the effect of temperature. As air temperature increases,
this term decreases, indicating more favorable conditions for fire occurrence due
to enhanced fuel drying [82].

• The term U
20
represents the effect of atmospheric moisture. Higher relative humid-

ity increases this term, reflecting less favorable conditions for fire ignition, since
moist air reduces fuel flammability [82].

Lower values of the Ångström Index indicate drier and warmer atmospheric condi-
tions, which are more conducive to fire ignition and propagation. Conversely, higher
index values correspond to cooler and more humid conditions, reducing fire risk [83].

According to the classification proposed in the literature [82]:

• B < 2.5: Very high fire risk;

• 2.0 ≤ B < 4.0: Moderate fire risk;

• B ≥ 4.0: Low or negligible fire risk.
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Due to its simplicity and reliance on readily available meteorological variables, the
Ångström Index is particularly useful for operational fire monitoring and early warning
systems, especially in regions with limited data availability [83].

2.5.8 Algorithm Comparison Metrics (Benchmarking)
Metrics are used to quantify the performance of architectures. They also assist in

the evaluation and optimization of hyperparameters of classifiers [59,66].
Precision is the proportion of true positives (TP) over all predicted positives (TP +

FP):

Precision =
TP

TP + FP

Recall or Sensitivity, is the proportion of true positives (TP) over all actually positive
cases (TP + FN):

Recall = TP

TP + FN

F1-score is the harmonic mean between Precision and Recall:

F1-score = 2 · Precision · Recall
Precision+ Recall

Accuracy is the ratio of correct predictions to the total number of predictions made:

Accuracy =
TP + TN

TP + TN + FP + FN

2.5.9 Related Work

2.5.10 Road Network Mapping with Multispectral Bands
In the work by Hollendonner et al. [36], the authors investigated the automated ex-

traction of road networks using WorldView-3 images from the SpaceNet dataset. The
methodology employed a U-Net architecture with DenseNet backbone, utilizing inno-
vative combinations of multispectral bands (Green, Red Edge, and Near-IR2) in false
colors.

The results demonstrated significant gains: an increase of 5.4% in F1-Score and
6.5% in IoU compared to the conventional RGB model. This study validates the poten-
tial of non-visible bands to improve the segmentation of linear features such as roads,
being directly relevant for the exploration of spectral characteristics in this work.

2.5.11 Forest Fire Detection with Ensemble Learning
Xu et al. [37] proposed a fire detection system based on ensemble learning, com-

bining YOLOv5, EfficientDet, and EfficientNet. The strategy used the global classifier
(EfficientNet) to validate local detections, reducing false positives to just 0.3%.
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Although the domain is different, the ensemble approach and the combination of
information at multiple levels (local and global) offer valuable insights for detection ar-
chitectures in remote sensing.

2.5.12 Mapping with Data Cube and Temporal Segmentation
Chaves et al. [84] explored land use mapping in Mato Grosso by integrating MODIS

data cubes with GEOBIA segmentation. Using multiresolutional segmentation and
SVM classification, they achieved an accuracy of 0.95 in identifying natural vegetation
and crops.

The methodology demonstrates the effectiveness of combining temporal and spatial
analysis, reinforcing the importance of image processing and classification techniques
for information extraction in complex landscapes.

2.5.13 Comparative Table of Related Works
The table below synthesizes and compares the three analyzed works:

26



Table 2: Comparative Table of Related Works

Criterion Hollendonner et
al. [85]

Xu et al. [86] Chaves et al. [84]

Main Objective Improve automated
road network ex-
traction with Deep
Learning and multi-
spectral bands.

Develop a real-time
fire detection sys-
tem with low false
positive rate using
ensemble learning.

Evaluate the com-
bination between
data cube and
GEOBIA to map
natural vegetation
and double crop-
ping.

Main Methodol-
ogy

Semantic segmen-
tation with U-Net
and DenseNet
using false color
bands (Green,
Red Edge, Near-
Infrared 2).

Ensemble with
three models:
YOLOv5, Efficient-
Det, and a global
classifier (Efficient-
Net).

Data cube archi-
tecture (MODIS
ARD) combined
with object-oriented
segmentation
(GEOBIA via MRS)
and classification
via SVM.

Main Results Improvement of
5.4% in F1-Score
and 6.5% in IoU
compared to using
only RGB.

Reduction of false
positive rate to
0.3%, surpassing
individual models.

Overall accuracy
of 0.95 in mapping
heterogeneous
landscapes.

Challenges /
Limitations

Occlusions (trees,
buildings), unpaved
roads, and discon-
nected segments
are still challenging.

Isolated detectors
generate many
false positives; no
model is effective in
all scenarios.

Confusion be-
tween Cerrado and
Pasture; MODIS
resolution limits
the creation of
homogeneous geo-
objects.

Relevance for
this Thesis

Validates the use
of CNNs for infras-
tructure extraction
(roads) from satel-
lite imagery.

Demonstrates the
effectiveness of
ensemble models
for complex envi-
ronmental tasks.

Demonstrates the
potential of combin-
ing remote sensing
and SVM for accu-
rate LULC mapping
in heterogeneous
regions.
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3
METHODOLOGY

3.1 RESEARCH CHARACTERIZATION AND DATA USED
This research was structured to develop and evaluate a method for automatic de-

tection of roads and access routes in areas associated with the first focuses of forest
fires. The central objective was to analyze how the presence and density of roads near
initial ignition points can aid in understanding occurrence patterns and support preven-
tion and rapid response actions. To this end, 40 fire events recorded by the OroraTech
platform in the Cerrado biome during the months of October and November were col-
lected, processed, and analyzed. The research followed the steps outlined in Figure
17 below.

Figure 17: Roadmap of the work developed. Source: Own authorship.

3.2 RESEARCH CHARACTERIZATION AND DATA USED
For each fire event, information was collected through the OroraTech platform, a

German company specializing in thermal satellite monitoring. The data included the
geographical coordinates of the first focus (in WGS84), detection date and time, tem-
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perature of the first focus in degrees Celsius, relative air humidity in percentage, total
burned area in square kilometers, and a file in GeoJSON format containing the com-
plete spatial geometry of the event.

Using the GeoJSON file as a spatial reference, Sentinel-2 images were obtained
through the Sentinel-Hub platform. Although Sentinel-2 provides several spectral bands
(B01;B12), ranging from visible to infrared, only RGB compositions were downloaded.

This choice is due to the fact that the other color spaces used in the research (HSV,
CIELAB, derived indices, and principal components) would be generated later in pro-
cessing from the RGB image itself. In this way, the download was restricted to the
essential, avoiding redundancy and reducing the volume of data to be processed.

3.3 ROAD MANUAL VECTORIZATION STAGE
Among the 40 images obtained, 12 were selected for amanual vectorization process

of road structures. Using QGIS software, each image was loaded as a raster layer and a
new vector layer of linestring type was created with the same spatial reference system.
The procedure consisted of manually tracing lines over all visible road structures in
the image, including asphalt-paved highways, unpaved secondary roads in earth, rural
access routes, and well-defined trails used by vehicles.

During this vectorization process, linear structures that did not correspond to roads
were deliberately excluded, such as property fences, forests, shrubs, power transmis-
sion lines, and land boundaries. After tracing the lines, each shapefile was reviewed
visually at multiple zoom scales to ensure completeness, geometric accuracy, absence
of duplications, and correct alignment with the center of the roads. The 12 vectorized
shapefiles were then exported in ESRI Shapefile format, preserving geometric and spa-
tial reference system information.

3.4 CONVERSION TO BINARY MASKS
The 12 shapefile files containing the vectorized roads were converted into raster-

ized binary masks through a script developed in Python using the Rasterio library. Each
shapefile was rasterized to the same spatial grid as the original Sentinel-2 RGB images.
In the resulting binary encoding, pixels that intercepted any part of a vector line received
the value 255 on an 8-bit scale, representing the road class, while all other pixels re-
ceived the value 0, representing the non-road class. According to Figures 18 and 19
below.
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Figure 18: Binary mask developed from the template produced in QGIS. Source: Own
authorship.

31



Figure 19: Overlay from the binarized masks and the original image. Source: Own
authorship.

It was verified that each binary mask had the same alignment as the original image.
To do this, three fundamental aspects were checked: the same geotransformation ma-
trix, the same spatial reference system (EPSG:4326), and the same dimensions in
number of pixels. As a confirmation step, each mask was overlaid on the respective
RGB image in QGIS, allowing visual observation of whether the contours were cor-
rectly matched. In the end, 12 binary masks in GeoTIFF format (8 bits) were obtained,
all perfectly corresponding to the vectorized images.

3.5 IMAGE PROCESSING
All 40 RGB images obtained were submitted to two preprocessing operations before

feature extraction. The first operation was radiometric normalization, in which each
pixel was divided by 255, converting 8-bit values (scale 0-255) to a continuous scale of
0 to 1. This normalization is essential to ensure numerical stability during subsequent
feature extraction and model training stages.

The second stage of processing consisted of applying a two-dimensional Gaussian
filter, using a 5 × 5 pixel kernel and standard deviation σ = 1.5. This operation per-
forms spatial smoothing of the image through its convolution with a Gaussian function,
which reduces radiometric noise from various sources, such as thermal sensor noise
and atmospheric interference [45]. By smoothing fine details and high-frequency tex-
tures, the filter homogenized the overall appearance of the scene, which contributed
to a better definition of contours and smooth linear structures characteristic of roads,
facilitating their subsequent identification. The procedure was applied independently to
each of the three RGB channels, ensuring the preservation of the original relationships
between spectral bands.

Figure 20 represents the change in the image.
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Figure 20: Image smoothed by the Gaussian filter. Source: Own authorship.

3.5.1 Class Imbalance Correction
Analysis of the labeled masks revealed a marked imbalance between classes, since

roads appeared as very thin lines. Of the 2,388,146 pixels considered, only 28,594
(1.20%) were positive, resulting in an approximate ratio of 1:82 between road and non-
road. To make the set trainable, two correction strategies were applied [87].

First, morphological dilation with 8-connectivity was performed, increasing the thick-
ness of roads, connecting fragmented segments, and reducing the sparsity of the posi-
tive class. Then, random undersampling of the negative class was performed, keeping
only four background pixels for each road pixel. This approach resulted in a final ratio
of 1:4, preserving all 28,594 positive pixels and reducing negative ones to 114,376.

Thus, the balanced dataset used in training contained 142,970 pixels, ensuring
greater stability and avoiding learning problems arising from the initial extreme imbal-
ance.

3.5.2 Feature Extraction
Before defining the final set of attributes, an exploratory analysis of the variables

extracted from the images was performed. This step had only the function of prelim-
inarily verifying how different descriptors behaved in regions containing roads. It was
not a performance evaluation, but an initial procedure to guide the selection of the most
appropriate characteristics.

The inspection indicated that perceptual color spaces, such as HSV and CIELAB,
reveal relevant differences between pavement, vegetation, and exposed soil [36, 49].
Components associated with luminance, brightness, grayscale, and chromatic axes
showed consistent variations along the roads [88]. These results motivated the adop-
tion of multiple colorimetric and structural representations in the composition of the
feature set.

Based on these initial observations, two complementary strategies for attribute ex-
traction were developed, described below.
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3.5.3 Strategy Based Only on Color Spaces
In the first approach, called Complete Strategy, the preprocessed RGB images were

used directly for the generation of a comprehensive set of features. Smoothed RGB
channels were extracted, conversions to HSV and CIELAB color spaces, grayscale im-
age, a simple brightness measure, and the magnitude of the Sobel operator for edge
detection. In addition to these attributes, an adapted NDVI index was also incorporated,
previously calculated from the original bands, employed as an attempt to partially com-
pensate for the absence of the near-infrared band in RGB images [52]. The final set of
this approach resulted in 12 features per pixel.

NGRDI, calculated directly from the visible bands of RGB images, presents rele-
vant capacity to highlight vegetated regions even when multispectral sensors are not
available, as discussed in [50]. In the present study, the unavailability of the bands nec-
essary for adequate NDVI calculation motivated the adoption of NGRDI as a method-
ological alternative, since this index can be derived exclusively from information con-
tained in the visible spectrum and still demonstrate good effectiveness in distinguishing
areas covered by vegetation. Previous works reinforce this potential, highlighting the
use of NGRDI both for vegetation coverage classification and for application in agricul-
tural models and pasture analysis [53, 54]. Thus, its use in this study seeks to supply,
at least partially, the absence of NDVI, preserving the ability to perform a consistent
spatial analysis of vegetation from available spectral data.

3.6 PREPARING IMAGE SETTINGS FOR COMPARISON

3.6.1 Strategy Based Principal Component Analysis
To understand the data structure and identify possible redundancies between spec-

tral features, Principal Component Analysis (PCA) was applied to the extracted feature
set [43].

The analysis revealed that the first components explained most of the variance in
the data. The first component (PC1) explained 70.09% of the total variance, the second
component (PC2) added 11.92%, the third component (PC3) contributed 7.07%. Thus,
only the first three principal components retained approximately 89.08% of the total
variance of the data. This finding motivated the development of an alternative process-
ing strategy using images reconstructed from these first three components, exploring
dimensional reduction as a regularization mechanism.

In the second approach, called PCA Strategy, the images were initially transformed
through Principal Component Analysis (PCA). From the first three components, new
images were reconstructed that preserve the main statistical variations of the scene.
On these transformed images, the same procedures from the previous strategy were
applied: conversions to HSV and CIELAB, brightness calculation, grayscale, and Sobel

34



operator. The objective of this strategy was to evaluate whether the reorganization
of spectral information promoted by PCA could facilitate the separation between the
classes of interest during model training [43].

The two strategies were designed to be complementary. The first directly explores
the original spectral behavior of RGB images, while the second investigates how PCA
transformation can reorganize and highlight useful information. Both were grounded by
the initial exploratory analysis and by established studies in image processing, ensuring
that the classifier receives a rich and representative set of features.

3.6.2 Attribute Extraction, Processing Pipelines, and Modeling
This study adopted a supervised pixel-by-pixel classification approach for road de-

tection in aerial images. The methodological flow was structured in three main stages:
(i) extraction of spectral attributes, (ii) data preparation with class imbalance correction,
and (iii) training of machine learning models, including independent ensemble strate-
gies.

3.6.3 Attribute Extraction and Color Spaces
The first step consisted of defining descriptors capable of representing each pixel

in a manner sensitive to photometric differences between pavement, vegetation, and
exposed soil. Multiple color spaces were used due to the complementarity of their
spectral responses, allowing specific features of the scene to be emphasized.

Two independent pipelines for attribute extraction were developed, which share the
same spectral transformation techniques but differ in how the initial bands are defined.

Pipeline Without PCA In the first pipeline, the image is processed directly from the
original RGB channels. Based on these channels, spectral attributes were generated
in the following spaces:

• CIELAB (L, A, B): separates luminosity from chromaticity [49], approaching hu-
man perception;

• HSV (H, S, V): highlights hue and saturation, useful for differentiating materials
[43];

• Grayscale: representation of light intensity [36];

• Adapted NDVI (NGRDI): NGRDI applied to RGB images to highlight vegetated
regions [50].

This pipeline fully preserves the spectral information of the original image, resulting
in a richer feature vector, but also more susceptible to noise and redundancy.
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Pipeline With PCA In the second pipeline, the initial image is compressed by Prin-
cipal Component Analysis (PCA). The first three components (PC1, PC2, and PC3),
responsible for capturing most of the variance [69]. From these reduced bands, the
same transformations are applied:

• conversion to CIELAB;

• conversion to HSV;

• calculation of grayscale;

• calculation of adapted NDVI.

3.7 MACHINE LEARNING MODELS
Four classical supervised algorithms were employed in the classification task:

• K-Nearest Neighbors (KNN): suitable for nonlinear decision boundaries and de-
pendent on space geometry [55];

• Decision Tree: interpretable model, organized as hierarchical divisions of at-
tribute space [58];

• Random Forest: ensemble of multiple independent trees, reducing variance and
increasing robustness [57];

• Multi-Layer Perceptron (MLP): neural network capable of capturing complex
nonlinear relationships [65].

Each algorithm was evaluated in two distinct hyperparameter configurations, result-
ing in eight base models per pipeline.

3.7.1 Ensemble Architecture
For each pipeline (with and without PCA), an independent ensemble architecture

was constructed. In each case, the eight base models generate preliminary predictions,
subsequently combined by an AdaBoost meta-classifier with 50 estimators.

Therefore, two ensembles were trained:

1. Ensemble Without PCA: operates on the set of attributes derived directly from
the original RGB bands;

2. Ensemble With PCA: operates on the reduced set of PCA bands.
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This separation allows evaluation of the impact of dimensionality reduction on sys-
tem accuracy and stability.

3.7.2 Comparative Performance
The experimental results revealed important differences between the two ensem-

bles:

• The ensemble without PCA presented the best overall performance, obtaining
superior metrics of precision, recall, and F1-score. However, the model showed
greater sensitivity to noise and higher risk of overfitting, a characteristic associ-
ated with the high dimensionality of the feature vector.

• The ensemble with PCA presented inferior metrics but demonstrated greater
stability, lower variance, and lower tendency to overfitting. Dimensional reduction
provided a more compact and less redundant set of attributes.

• In both cases, the use with AdaBoost improved performance relative to individual
models, reducing specific errors of each classifier.

In summary, the ensemble based on the without PCA pipeline achieved the best
absolute performance, while the ensemble with PCA stood out for greater robustness
and lower risk of overfitting, offering a more conservative alternative for scenarios with
high spectral variability.

The result of the mask predicted by the machine learning model using PCA follows
the figure below 21.
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Figure 21: Mask produced by the chosen predictive model. Source: Own authorship.

3.7.3 Post-processing: Binarization, Skeletonization, and Size Filtering
After the generation of prediction masks by the model, a post-processing pipeline

was applied to identify, separate, and quantify only the most consistent road segments.
The objective of this stage was to reduce noise, remove disconnected fragments, and
retain exclusively segments sufficiently extensive for quantitative analysis.

Binarization via Otsu Threshold The raw masks produced by the model may con-
tain intensity variations and ambiguous regions. To standardize this representation,
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Otsu’s method was initially applied, which automatically selects an optimal threshold to
separate the road class from the background. The result is a binary mask where pixels
belonging to roads are marked with value 1 [74].

Skeletonization of the Binary Mask The binarized image was then subjected to the
skeletonization process, whose function is to reduce each connected segment to a cen-
tral line of unit thickness, preserving its topological structure. This step is fundamental
to prevent variations in line width from influencing pixel counting and, consequently,
size grouping.

Grouping by Connected Components From the binary skeleton, connected com-
ponent labeling was applied. Each set of adjacent pixels was treated as an independent
road segment. This step transforms the skeletonized mask into well-defined geometric
units and allows operation on each stretch in isolation.

Classification of Segments by Size Each identified component had its size mea-
sured in number of pixels. Based on this measurement, segments were classified into
three categories:

• small: up to 200 pixels;

• medium: from 201 to 800 pixels;

• large: above 800 pixels.

These thresholds were defined empirically, based on experimentation and visual
analysis. Small segments tend to correspond to residual noise, spurious connections,
or fragmented predictions, while large segments represent continuous and reliable road
stretches.

Colorization and Filtering of Segments After classification, each component re-
ceived a specific color according to its category. In particular, segments classified as
large were highlighted in red, as they represent more complete and structurally consis-
tent roads. Medium and small segments were considered less relevant for subsequent
analysis. Below, Figure 22 shows this colorization of segments.
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Figure 22: Mask produced from the Machine Learning model, involving PCA and col-
orization in relation to the size of pixels followed. Source: Own authorship.

Next, all components that did not belong to the large class were removed, resulting
in an image containing exclusively red segments corresponding to extensive roads.
Figure 23 below shows only the red segments.
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Figure 23: Selection of the largest continuous segments of identified roads. Source:
Own authorship.

3.8 COUNTING AND STATISTICS GENERATION
Finally, the mask containing only the red segments was submitted to a process of

component and pixel counting. This step produces consolidated metrics on:
These statistics were recorded in CSV files, allowing quantitative comparison be-

tween images and between different model configurations.

3.9 STATISTICAL ANALYSIS AND RISK DEFINITION
To investigate the hypothesis of anthropogenic influence on fires, a segmented sta-

tistical approach was adopted. The climatic control variable used was the Ångström
Index (B).

The cutoff value B > 2.5 was used to filter days of “Climatic Safety”, that is, periods
where humidity and temperature did not favor natural fire propagation [82].

To quantify the relationship between road infrastructure and fire occurrence on these
specific days, the Spearman Correlation Coefficient (ρ) was chosen.
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3.10 STATISTICALANALYSIS: THEANTHROPOGENIC FACTORAND
ROAD INFRASTRUCTURE

To understand the influence of road infrastructure on fire occurrence, a segmented
statistical analysis was performed, using the Ångström Index (B) as a climatic control
filter. The objective was to isolate fire events where meteorological conditions were
not favorable to natural propagation (B > 2.5), thus highlighting the human factor. The
correlated variables were:

• Independent Variable: Quantity of Roads (Total pixels of roads detected in the
area).

• Dependent Variable: Fire Intensity (Total red pixels identified in the burned area).

• Control Variable: Land Use (Forest, Pasture, Agricultural) to identify the motiva-
tion for burning.

Results of Anthropogenic Analysis Unlike the hypothesis of spontaneous ignition
by dry climate, the application of the Spearman correlation coefficient (ρ) suitable for
identifying monotonic trends in nonlinear data revealed a strong positive association
between the presence of roads and the magnitude of fires, even under conditions of
high humidity.

• Low Climatic Risk Scenario (B > 2.5): An extremely high Spearman correlation
of ρ = 0.9088 was observed between the quantity of roads and the intensity of the
burned area.

• Motivation by Land Use: When segmented by vegetation type, the Forest cat-
egory presented the highest positive correlation (ρ ≈ 0.50), while Pasture ar-
eas presented null or negative correlation, indicating that road infrastructure acts
mainly as a vector for suppression of native vegetation (deforestation) and not
just pasture management.

This result suggests that in areas with higher density of road infrastructure, the fire
risk is determined predominantly by human accessibility (anthropogenic factor), over-
coming the barriers imposed by meteorological variables.

42



4



4
RESULTS

4.1 IDENTIFICATION AND CORRECTION OF CLASS IMBALANCE
The initial analysis of the 12 binary masks revealed an extreme imbalance between

classes. Since roads were represented by very thin lines, there was a very limited
quantity of pixels belonging to the positive class. When considering exclusively the
labeled images, 2,388,146 pixels were counted, of which only 28,594 corresponded to
the “road” class. Thus, the minority class represented approximately 1.20% of the total,
establishing a ratio of approximately 1:82 between positive and negative pixels. This
initial distribution already indicated the need for specific interventions to enable training
and avoid overthinking [87].

• 2,388,146 total pixels;

• 28,594 positive (roads);

• 2,359,552 negative.

To mitigate this problem, two complementary correction strategies were adopted.
The first consisted of the application of morphological dilation to the road masks. This
operation expanded each positive pixel to its immediate neighbors, connecting discon-
tinuous stretches and giving greater thickness to road segments. Dilation reduced the
sparsity of the minority class and produced a more faithful representation of the spatial
area occupied by roads.

Despite the gains obtained with dilation, the negative class remained largely domi-
nant. Thus, a second correction strategy was implemented: random undersampling of
non-road pixels. For each positive pixel, only four negative pixels were retained, obtain-
ing a final ratio of 1:4 between classes. This approach proved adequate to preserve the
variability of the majority class without inhibiting learning about the minority class [87].

At the end of the balancing process, all 28,594 positive pixels were preserved,
while negative pixels were reduced to 114,376, totaling 142,970 pixels in the balanced
dataset.

The balanced dataset used in training now had:

• 28,594 positive;
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• 114,376 negative.

4.2 CORRELATIONBETWEEN FEATURESANDROADPRESENCE
Before training the models, an exploratory analysis was performed to identify which

attributes presented the greatest linear relationship with the “road” class. Table 3 presents
the correlation ranking between each feature and positive pixels.

Table 3: Ranking of correlation between features and road pixels

Feature Correlation
LAB_B (blue–yellow axis) +0.0690
Red_Ratio +0.0522
LAB_A (green–magenta axis) +0.0469
Red_Smooth +0.0465
HSV_V (value) +0.0414
Gray +0.0386
Brightness +0.0384
LAB_L (luminosity) +0.0383
HSV_S (saturation) +0.0365
Green_Smooth +0.0345
Sobel (gradient) +0.0259
Blue_Smooth +0.0231
HSV_H (hue) -0.0491

The figure 24 below shows the color spaces of an image collected where a fire focus
occurred.
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Figure 24: Color spaces of a region where a fire focus occurred in the Cerrado. Source:
Own authorship.

Although correlations aremoderate, LAB color space features (mainly LAB_B) stood
out as more informative, reinforcing their usefulness in pavement discrimination. Mean-
while, hue (HSV_H) showed negative correlation, consistent with the fact that roads
exhibit low chromatic variation. Below, Figure 25 shows more detailed correlations.
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Figure 25: Representation of color space correlations in more detail. Source: Own
authorship.

In addition to features extracted from color spaces, an NGRDI index calculated di-
rectly from the original RGB images was incorporated. Since the scenes did not have
an NIR band, an approximation based on the ratio between green and red bands was
used. Although not representing the true NDVI, the index proved useful in reinforcing
the separation between vegetated areas and anthropogenic surfaces, contributing to
improved road discrimination. The figure below shows how Figure 26 RGB taken from
Sentinel Hub transformed into NDVI.
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Figure 26: NGRDI, representing NDVI directly from RGB. Source: Own authorship.

4.3 PRINCIPAL COMPONENT ANALYSIS (PCA)
Before the training stage, a dimensional reduction analysis was also performed us-

ing PCA (Principal Component Analysis). The objective was to observe how the vari-
ance of features is distributed among principal components and to evaluate whether
most of the relevant information could be compressed into few dimensions [69]. The
figures below present the variance explained by component and the projection of sam-
ples on the first two components, evidencing partial separability between road and non-
road pixels. Below, Figure 27 and 28 show the 3 PCA components and the overlap with
roads binarized by QGIS.

Figure 27: 3 Components of PCA. Source: Own authorship.
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Figure 28: Mask overlaid by PCA in two locations where fire focuses occurred. Source:
Own authorship.

4.4 PERFORMANCE OF SEGMENTATION MODELS

4.4.1 Model Configuration
Multiple hyperparameter variations were evaluated for four supervised algorithms:
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Random Forest, KNN, Decision Tree, and MLP, totaling 16 distinct configurations. The
objective was to investigate model behavior under different decision structures and
complexity levels.

4.5 EXPERIMENTAL RESULTS
To evaluate the impact of feature selection and dimensionality reduction on road

detection, experiments were divided into two major scenarios: (A) Datasets without di-
mensionality reduction (Raw Data) and (B) Datasets submitted to PCA with the addition
of advanced descriptors.

4.5.1 Definition of Test Scenarios
To isolate the contribution of different types of information, the following attribute

packages were defined:

• Scenarioswithout PCA (RawData): COLOR_ALL (9 color channels), COLOR_ALL+Gray
and FULL (Color + Sobel).

• Scenarioswith PCA (CompressedData): PCA_BASIC (RGB), PCA_CONTEXT (RGB
+ Texture) and PCA_FULL (RGB/LAB/HSV + Texture + NDVI + LBP).

4.5.2 Individual Results: Scenario Without PCA
In this scenario, classifiers dealt with raw and highly correlated data (e.g., RGB and

LAB channels have high redundancy). Table 4 highlights the best performances by
algorithm family.

Table 4: Individual Performance - Scenario WITHOUT PCA (Raw Data)

Model & Combo Accuracy Precision Recall F1-Score
RandomForest_V2 (COLOR_ALL) 0.6675 0.3191 0.5847 0.4129
RandomForest_V2 (FULL) 0.6750 0.3193 0.5525 0.4047
DecisionTree_V1 (FULL) 0.6645 0.3095 0.5506 0.3963
KNN_V1 (COLOR_ALL+Gray) 0.7647 0.3621 0.2320 0.2828
MLP_V2 (COLOR_ALL) 0.8037 0.6190 0.0479 0.0889

The best individual result was obtained by Random Forest on the COLOR_ALL dataset
(F1 = 0.4129). It is worth highlighting the behavior of the other algorithms:

• KNN: Suffered from the high dimensionality of raw data, presenting low Recall
(≈ 0.23).

• MLP (Neural Networks): Although it presented high accuracy (≈ 80%), the
model failed drastically in detecting the class of interest (Road), with a Recall
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of only 0.04. In other words, the network learned to classify almost everything as
“Non-Road” to maximize overall accuracy, making it useless for the problem.

4.5.3 Individual Results: Scenario With PCA
At this stage, models used principal components extracted from richer features (in-

cluding NDVI and LBP). Table 5 presents the results.

Table 5: Individual Performance - Scenario WITH PCA (Advanced Features)

Model & Combo Accuracy Precision Recall F1-Score
RandomForest_V2 (PCA_FULL) 0.7306 0.4038 0.7284 0.5195
RandomForest_V2 (PCA_CONTEXT) 0.7260 0.3981 0.7228 0.5134
DecisionTree_V1 (PCA_CONTEXT) 0.6548 0.3405 0.7753 0.4732
KNN_V1 (PCA_CONTEXT) 0.7954 0.4852 0.3775 0.4247
MLP_V2 (PCA_FULL) 0.8181 0.5992 0.2726 0.3747

There was a significant leap in quality. Random Forest in the PCA_FULL combo
achieved the best individual F1-Score (0.5195). The application of PCA benefited all
classifier families:

• KNN raised its F1-Score from 0.28 to 0.42, proving that noise reduction helped in
distance calculation.

• MLP improved its F1 from 0.08 to 0.37, finally managing to learn patterns of the
Road class, thanks to the cleaner variance explained delivered by PCA.

4.5.4 Final Comparison: AdaBoost Ensemble
For the final decision, the AdaBoost meta-classifier was used to combine predictions

from previous models. Table 6 compares the effectiveness of the two scenarios in
detecting Class 1 (Road).

Table 6: Comparison of Final Ensembles (Stacking with AdaBoost)

Strategy Accuracy Precision Recall F1-Score
Ensemble PCA 0.8441 0.6615 0.4526 0.5375
Ensemble No-PCA 0.8097 0.5795 0.1789 0.2735

The results demonstrate the superiority of the PCA + Advanced Features approach.

• Failure of Ensemble without PCA:Despite an accuracy of 80%, Recall was only
0.1789. This means the model missed over 80% of actual roads, incorrectly clas-
sifying them as vegetation. The lack of descriptors like NDVI prevented correct
distinction.
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• Robustness of PCA Ensemble: The model achieved an F1-Score of 0.5375,
with a Precision of 0.66. This indicates that when the model points to a road, it
has a high probability of being correct, maintaining a detection level (Recall of
0.45) almost three times higher than the model without PCA.

The combination of dimensionality reduction with vegetation attributes (NDVI) and
texture (LBP) proved essential to resolve the spectral ambiguity between dirt roads and
exposed soil in the Cerrado.

Figure 29: Original image, taken from Sentinel Hub of a fire focus event. Source: Own
authorship.

Figure 30: Mask produced by the predictive model, identifying roads automatically.
Source: Own authorship.

In addition to evaluating model performance, a post-processing stage was applied
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to organize and quantify detected roads. First, the segmented masks underwent skele-
tonization, reducing each road to its central axis. Next, connected regions were grouped
and classified according to trace size (small, medium, and large). These groups were
represented by distinct colors: white, green, and red, respectively, allowing clear visu-
alization of length distribution. Finally, only structures classified as large (in red) were
selected for final quantitative analysis.

Figure 31: Categorization of skeletonization sizes, where red are large, green are
medium, and white are small. Source: Own authorship.

Figure 32: Selection of skeletonization defined as large. Source: Own authorship.

4.6 ANTHROPOGENIC INFLUENCEUNDERCLIMATICSAFETYCON-
DITIONS

To investigate the relationship between road infrastructure and fire occurrence, the
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analysis focused strictly on events classified as “Low Natural Risk” (Ångström Index
> 2.5). This approach allowed isolating the human factor, removing statistical noise
caused by extremely dry days where ignition could be spontaneous or facilitated only
by wind.

Verifying the dispersion of data in relation to the categorization of the Ångström
Index, it is clear that there are more fire cases when the index result falls between 1-3.
As Figure 33 below illustrates.

Figure 33: Dispersion of fire cases with the Ångström Index. Source: Own authorship.

Correlation Between Roads and Fire Intensity The application of the Spearman
correlation coefficient (ρ) revealed an extremely strong positive association between
the presence of roads and the magnitude of burns on these humid days.

The results indicate ρ = 0.9088 (p-value < 0.001), demonstrating that road density is
the main predictor of fire intensity when climate acts as a natural barrier. Figure 34 illus-
trates this trend, where exponential growth of focus intensity is observed proportionally
to the increase in detected road density.

Scenario 1: Synergy in High Climatic Risk (B ≤ 2.5) In this scenario, characterized
by low humidity and high temperature, Pearson’s linear correlation reached the strik-
ing value of r = 0.9434. This result indicates a destructive synergy: road infrastructure
provides the ignition point and access, while extreme meteorological conditions poten-
tiate immediate and linear fire propagation. The road acts here as the “trigger” in an
environment already prone to combustion.

Scenario 2: Anthropogenic Forcing in Low Risk (B > 2.5) On days when climate
imposed barriers to natural propagation (higher humidity), the trend correlation (Spear-
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man) remained extremely high (ρ = 0.9088). Unlike what would be expected for natural
causes where rain/humidity would drastically reduce focus, themaintenance of this high
correlation confirms that the road is the determining factor for fire occurrence.

Figure 34: Two correlation scenarios between the Ångström index (high and low) with
the total of roads. Source: Own authorship.

Motivation by Land Use By crossing fire intensity with land use and cover classes,
the probable motivation for these anthropogenic ignitions was identified. The Forest
class showed the highest positive correlation (ρ ≈ 0.50), while consolidated use areas
(Pasture and Agriculture) exhibited correlations near zero or negative. This pattern indi-
cates a more evident association between the presence of detected road infrastructure
and the occurrence of fires in native vegetation regions, including in periods of higher
humidity.

Figure 35 presents the ranking of Spearman correlation by vegetation category.

55



Figure 35: Ranking of the largest fire cases when the Ångström index was not favorable
for fires.

4.7 SYNTHESIS OF MAIN RESULTS
The integrated evaluation of the detection model and fire risk analysis allows high-

lighting four conclusive points:

• The complete ensemble presented the best performance in detection, achiev-
ing an F1-score of 0.9926.

• The PCA ensemble demonstrated computational efficiency, maintaining al-
most equivalent performance with only 4 principal components.

• LAB confirmed itself as the most relevant color space, validating its suitability
for segmentation of paved surfaces and exposed soils.

• Road infrastructure confirmed itself as a critical vector for anthropogenic
fires. The Spearman correlation of 0.90 on days of safe climate, associated with
the predominance of burns in forest areas, statistically evidences the use of roads
for deforestation activities in the studied region.
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4.7.1 Limitations
Despite the statistical robustness observed in the correlations, the study presents

limitations inherent to the defined scope:

• Event Sampling: The temporal and spatial cutoff resulted in a focused dataset
(N=40), which, although statistically significant for validating the proposedmethod-
ology, suggests caution in immediate generalization to other biomes without new
data.

• Spectral Resolution: The absence of the near-infrared band (NIR) in the input
dataset limited the use of traditional vegetation indices (such as NDVI) to refine
pre-fire biomass classification.

• Spatial Resolution: The detection of very narrow vicinal roads or trails under the
forest canopy may be underestimated depending on the resolution of the satellite
images used.

Even with these limitations, the methodology proved the hypothesis that road ex-
pansion and fire are intrinsically linked to land use conversion processes, regardless of
climatic conditions.
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5
CONCLUSION

The results indicate the presence of a strong correlation between road density and
fire occurrence. The segmented analysis suggests that road infrastructure may be
associated with different dynamics: on dry days, it tends to coincide with greater fire
spread (Pearson ≈ 0.94), while on humid days it shows a stronger association with
ignition patterns (Spearman ≈ 0.90). It was also observed that, even under climatic
conditions less favorable to combustion, fire incidence remains concentrated in forested
areas, pointing to possible relationships between the presence of roads and changes
in land use and land cover.

From a methodological perspective, the development of an automatic road detec-
tion system represented a relevant step in this study. The use of an Ensemble archi-
tecture, combined with data balancing techniques and morphological post-processing,
enabled the segmentation of road structures in satellite imagery, although with notable
limitations. The Adaboost based model, integrating classifiers such as KNN, Decision
Tree, Random Forest, and MLP, achieved an F1-score of 0.5375, indicating moder-
ate performance. This result suggests that, while the approach is promising, there is
considerable room for improvement, particularly through deeper hyperparameter tuning
and the expansion and refinement of the training dataset (ground truth).

The integration of segmentation outputs with meteorological information from the
OroraTech platform enabled a more comprehensive analysis of fire events by simulta-
neously incorporating anthropogenic and environmental factors. This combination con-
tributed to a more detailed understanding of the interactions influencing fire occurrence
in areas at the interface between natural environments and human-modified regions.

Despite the study’s limitations—such as the relatively small sample size, the mod-
erate performance of the segmentation model, and the lack of complete multispectral
data the results provide relevant evidence of anthropogenic influence on the observed
fire patterns. The identified correlations, although not implying direct causality, rein-
force the importance of considering variables related to road infrastructure, particularly
in forest frontier regions, within fire risk prevention and management strategies.

Potential practical applications include supporting territorial planning and environ-
mental management in the Cerrado biome. The proposed methodology may be incor-
porated into early warning systems, assisting in the identification of areas with higher
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probabilities of ignition or increased anthropogenic pressure on vegetation. The find-
ings may also inform land use planning policies that account for the impacts associated
with road expansion, especially unofficial or informal roads.

For future studies, it is recommended to expand the ground truth dataset, perform
more extensive hyperparameter optimization, incorporate multispectral imagery for the
calculation of indices such as NDVI, and evaluatemore advanced post-processing tech-
niques. Field validation and the replication of the approach in other Brazilian biomes
may further enhance the robustness and contextual relevance of the results.

In summary, this work contributes to the understanding of factors associated with
wildfires in the Cerrado, suggesting that the presence of roads may be linked to land
use changes and fire occurrence dynamics. Although the segmentation model still
presents limitations, the proposed approach demonstrates potential and can serve as a
foundation for the development of more robust tools aimed at monitoring and prevention
within environmental conservation and management initiatives.
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Appendix A - Appendix A Title

7.1 DATA COLLECTION STRATEGY

7.1.1 Rationale of the Approach
The definition of the collection strategy was guided by a technical visit to the Gestão

e Operações do Sistema de Proteção da Amazônia (CENSIPAM), held on July 31,
2023. During a meeting with analysts specialized in fire monitoring, the greater op-
erational relevance of fire focuses (first detections of thermal anomaly) was empha-
sized compared to already burned areas. This approach is justified by the possibility
of preventive intervention during the initial phase of the event, preventing evolution to
large-scale fires.

7.1.2 Data Platforms Used
Three main platforms were evaluated and used for data collection:

• BDQueimadas (INPE): Consolidated historical database with heat focus data
since 1998, but with limited access to satellite images. Figures 36, 37, 38, and
39 show the website interface.

Figure 36: BDQueimadas Dashboard, used for monitoring heat focuses [17].

Figure 37: Fire identification via BDQueimadas panel [18].
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• Fire Panel (CENSIPAM): Platform that integrates information from multiple satel-
lites, providing geographic coordinates, detection date/time, and soil cover classi-
fication, but with limited technical documentation and absence of historical climate
data.

Figure 38: Fire detection via Fire Panel, from CENSIPAM [19].

• OroraTech: Platform specialized in thermal satellite detection that overcame the
limitations of public databases, offering first focus identification, confidence met-
rics (Fire Confidence), integrated climate data, and GeoJSON format export.

Figure 39: Detection of heat focuses and fires by OroraTech platform [20].

Figure 40: Export of GEOJSON file by OroraTech platform [21].
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7.1.3 Satellite Image Acquisition
For obtaining multispectral images, Sentinel-Hub was used, a platform that pro-

vides access to data from the Copernicus Sentinel-2 mission, with spatial resolution of
10 meters in RGB and near-infrared bands, and revisit every 5 days considering the
complete constellation of satellites.

Figure 41: Import of GEOJSON file to Sentinel Hub [22].

7.2 REFERENCE DATA CREATION AND PREPROCESSING

7.2.1 Manual Vectorization in QGIS
For creation of the labeled dataset, 12 of the 40 images were selected for manual

vectorization in QGIS software. The process consisted of:

1. Loading Sentinel-2 true color images as raster layers

2. Creation of vector layers of ”line” type with identical reference system

3. Manual digitization of all visible road structures, including paved highways, un-
paved secondary roads, rural access routes, and well-defined trails

4. Export of finalized shapefiles in ESRI Shapefile format
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Figure 42: Production of reference data in QGIS. Source: Author’s own.

7.2.2 NGRDI Calculation
Since the images used do not have a near-infrared band (NIR), it was not possible to

calculate the original NDVI. To overcome this limitation, an NGRDI was adopted using
only the bands available in RGB, replacing the NIR band with the green band. The
code used was:

def NGRDI(img):
"""NGRDI for RGB images"""
R = img[:,:,0]
G = img[:,:,1]
denom = (G + R + 1e-8)
return (G - R) / denom

Although approximate, NGRDI added useful information about vegetation, contribut-
ing to the distinction between exposed soil, vegetation, and roads.

7.3 DATASET BALANCING
The initial dataset presented severe imbalance in the proportion of 1:87 between

road and non-road pixels. To correct this, two sequential strategies were applied:

• Morphological Dilation: 8-neighborhood connectivity to expand road width and
reduce gaps in segmentation, reducing imbalance to 1:22
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• Controlled Undersampling: Selection of only four negative samples for each
positive (ratio 1:4), following recommendations from the literature on imbalanced
learning

7.4 POST-PROCESSING AND SKELETONIZATION

7.4.1 Mask Processing Pipeline
The prediction masks generated by the model were submitted to a sequential post-

processing pipeline implemented in Python. This pipeline executed the following oper-
ations:

1. Binarization via Otsu: Correction of artifacts and stable separation between road
and background

2. Skeletonization: Reduction of binary structures to unit thickness, preserving
topological connectivity

3. Component labeling: Identification of individualized road segments

7.4.2 Classification by Segment Size
After skeletonization, segments were classified into three categories based on the

number of pixels. Classification thresholds were determined empirically through itera-
tive visual analysis:

• Small segments (up to 200 pixels): Noise, artifacts, or insignificant road stretches

• Medium segments (201-800 pixels): Local roads or fragmented stretches

• Large segments (above 800 pixels): Main continuous transportation routes and
structurally relevant

7.5 DATA INTEGRATION AND STATISTICAL ANALYSIS

7.5.1 Final Table Composition
Processed data were integrated with meteorological information from OroraTech

using the focus ID as the primary key. The final table included the following variables:

• Identification: ID_Focus, Date, Latitude, Longitude

• Meteorological: Temperature_C, Relative_Humidity_%, Angstrom_Index, Risk_Classification

• Road infrastructure: Total_Roads_px, Total_Red_Pixels, Small_Pixels, Medium_Pixels,
Large_Pixels
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• Land use: Forest_%, Shrub_%, Pasture_%, Grass_%, Agricultural_Land_%

• Spatial: Area_km2, Distance_Roads_km

7.5.2 Correlation Analysis
Statistical analysis focused on the correlation between road infrastructure density

(represented by Total_Red_Pixels) and the Ångström Index, using:

• Pearson correlation coefficient for normal variables

• 40 observations from processed images

7.6 REPOSITORY AND TOOLS
All code developed, processed data, and complementary documentation are pub-

licly available in the repository: https://github.com/kelvinGomesP/TCC
The main tools used included:

• QGIS 3.28: Manual vectorization and geospatial analysis

• Python 3.10: Main processing with OpenCV, scikit-learn, and scikit-image

• Sentinel-Hub: Acquisition of multispectral images

• OroraTech: Detailed fire focus data and meteorological variables
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Annex A - Annex A Title

8.1 DATA BALANCING CODE

from skimage.morphology import binary_dilation, disk

# Dilation to connect disconnected segments
mascara_dilatada = binary_dilation(mascara_binaria, disk(2))

# Balancing to 1:4 ratio
N_NEG_RATIO = 4
pos_idx = np.where(y == 1)[0] # Positive indices
neg_idx = np.where(y == 0)[0] # Negative indices
np.random.shuffle(neg_idx) # Shuffling
neg_keep = neg_idx[:len(pos_idx) * N_NEG_RATIO]
indices_finais = np.concatenate([pos_idx, neg_keep])

8.2 POST-PROCESSING AND SKELETONIZATION CODE

import cv2
import numpy as np
from skimage.morphology import skeletonize, remove_small_holes
from scipy.ndimage import label

def processar_mascara_estradas(mask_path):
# 1. Load and binarize with Otsu
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
_, bin_mask = cv2.threshold(mask, 0, 1,

cv2.THRESH_BINARY + cv2.THRESH_OTSU)

# 2. Fill small holes
smooth = remove_small_holes(bin_mask.astype(bool),

area_threshold=40)

# 3. Skeletonization to unit thickness
skeleton = skeletonize(smooth).astype(np.uint8)

# 4. Identify connected components
labeled, num_componentes = label(skeleton,
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structure=np.ones((3,3)))
return labeled, num_componentes, skeleton

def classificar_segmentos(labeled_mask, num_componentes):
# Thresholds defined empirically
PEQUENO_MAX = 200
MEDIO_MAX = 800

contadores = {'small': 0, 'medium': 0, 'large': 0}
vis = np.zeros((*labeled_mask.shape, 3), dtype=np.uint8)

for comp_id in range(1, num_componentes + 1):
mascara_componente = (labeled_mask == comp_id)
tamanho = np.sum(mascara_componente)

if tamanho <= PEQUENO_MAX:
cor = [255, 255, 255] # White - small
categoria = 'small'

elif tamanho <= MEDIO_MAX:
cor = [0, 255, 0] # Green - medium
categoria = 'medium'

else:
cor = [0, 0, 255] # Red - large
categoria = 'large'

contadores[categoria] += 1
vis[mascara_componente] = cor

return vis, contadores

8.3 PROJECT REPOSITORY

• Complete codes: https://github.com/kelvinGomesP/TCC

• Processed images: Available in the repository

• Data spreadsheets: Including correlation tables and metrics

• Technical documentation: Instructions for reproducing experiments
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