
Ensino que
te conecta

BACHARELADO EM
COMPUTER SCIENCE

DEVELOPMENT OF AN ARTIFICIAL INTELLIGENCE
SYSTEM FOR DETECTION AND CLASSIFICATION OF
AEDES AEGYPTI ON A LOW-COST EMBEDDED
DEVICE

RAFAEL DE OLIVEIRA GUEDES NOGUEIRA

Brasília - DF, 2025

RAFAEL DE OLIVEIRA GUEDES NOGUEIRA

DEVELOPMENT OF AN ARTIFICIAL INTELLIGENCE
SYSTEM FOR DETECTION AND CLASSIFICATION OF
AEDES AEGYPTI ON A LOW-COST EMBEDDED DEVICE

Undergraduate Thesis presented as a partial requirement for the degree of Bachelor
in Computer Science, by the Instituto Brasileiro de Ensino, Desenvolvimento e
Pesquisa (IDP).

Advisor
M.Sc. Patrícia da Silva Oliveira

Brasília - DF, 2025

Código de catalogação na publicação – CIP

N778d Nogueira, Rafael de Oliveira Guedes
Development of an artificial intelligence system for detection and

classification of aedes aegypti on a low-cost embedded device/ Rafael de
Oliveira Guedes Nogueira. — Brasília: Instituto Brasileiro de Ensino,
Desenvolvimento e Pesquisa, 2025.

86 f. : il.

Orientador: Profª. Ma. Patrícia Da Silva Oliveira

Monografia (Graduação em Ciência da Computação) - Instituto Brasileiro

Ensino, Desenvolvimento e Pesquisa – IDP, 2025.

1. Aedes aegypti. 2. Edge artificial intelligence (Edge AI). 3. Shortcut
learning. I. Título

CDD 006.3

Elaborada por Biblioteca Ministro Moreira Alves

RAFAEL DE OLIVEIRA GUEDES NOGUEIRA

DEVELOPMENT OF AN ARTIFICIAL INTELLIGENCE
SYSTEM FOR DETECTION AND CLASSIFICATION OF
AEDES AEGYPTI ON A LOW-COST EMBEDDED DEVICE

Undergraduate Thesis presented as a partial requirement for the degree of Bachelor in
Computer Science, by the Instituto Brasileiro de Ensino, Desenvolvimento e Pesquisa
(IDP).

Approved on

Examination Board

M.Sc. Patrícia da Silva Oliveira - Advisor

M.Sc. Klayton Rodrigues de Castro - Internal Examiner

Dr. Mathias Schneid Tessmann - Internal Examiner

Mathias Schneid
Tessmann

Assinado de forma digital por
Mathias Schneid Tessmann
Dados: 2026.01.07 03:06:22 -03'00'

DEDICATION

Dedico esta obra primeiramente a Deus, Fonte de toda sabedoria,
que não apenas sustenta a minha existência,

mas fomenta em minha alma a inquietude constante
de investigar e compreender a realidade em sua essência.

Aos meus pais, alicerces do meu caráter:
ao meu pai, Miguel, pela lição perene de buscar a verdade,

despida de aparências ou conveniências;
e à minha mãe, Marta, que traduziu o conceito de amor

através da linguagem silenciosa do sacrifício e da entrega.
Ao meu querido amigo de infância, João Luiz,
que a vida se encarregou de tornar um irmão.

Agradeço por me ajudar a enxergar o mundo sob diferentes perspectivas
e por ser um grande incentivador do meu desenvolvimento pessoal.

À minha cunhada, Glaucia Maria, a quem considero uma irmã.
Agradeço pela amizade sincera e pelo apoio constante.

Por fim, dedico este trabalho de forma especial ao meu irmão, Gabriel.
Você tem sido meu norte, meu conselheiro

e o espelho de humanidade onde busco refletir minhas ações.
Esta conquista também é sua.

iv

ACKNOWLEDGMENTS

I would like to thank the Instituto Brasileiro de Ensino, Desenvolvimento e Pesquisa
(IDP) for the excellence of the academic environment and for all the support and infras-
tructure provided throughout my undergraduate studies.

I acknowledge the Fundação de Apoio à Pesquisa do Distrito Federal (FAP-DF) for
the financial support granted to the research project that originated this work, which
was fundamental for providing the necessary resources.

I am immensely grateful to my advisor, Professor Patrícia de Oliveira, for her wise
guidance, patience, and valuable academic contributions that made this work possible.

To Professor Jeremias Gomes, the most frequent instructor in my degree, I offer my
deep gratitude for his example of dedication and his invaluable willingness to assist me
whenever necessary.

To Professor Klayton Rodrigues, I thank you for accepting the invitation to serve on
the examining board and for the important lessons taught throughout the course.

I would also like to extend my sincere appreciation to the entomology professionals
at both the Instituto Aggeu Magalhães (Fiocruz-PE) and the ArboControl Laboratory
(UnB). Their welcoming attitude, technical support, and willingness to share their ex-
pertise were fundamental to the success of the data collection phase.

Tomy godmother MiriamRosa and godfather Antônio Silvestre, I extendmy deepest
gratitude for hosting me in their residence during my undergraduate studies, providing
an invaluable foundation of support and stability.

Finally, I express deep gratitude to my friend and colleague Igor Caldeira, whose
technical collaboration was indispensable. I am especially grateful for his effort in de-
veloping both versions of the smart trap used in this study.

v

ABSTRACT

Epidemiological surveillance of Aedes aegypti is a critical component in preventing ar-
boviruses such as dengue, Zika, and chikungunya. However, traditional manual iden-
tification methods are labor-intensive, time-consuming, and difficult to scale. This work
develops an embedded, real-time computer vision system for the automatic detection
and classification of the species Aedes aegypti, Aedes albopictus, and Culex quinque-
fasciatus, optimized for low-cost edge devices, specifically a Raspberry Pi 4. A com-
prehensive dataset of 85,296 images, representing 753 unique mosquito specimens,
was collected and curated in two distinct phases and locations to ensure biological di-
versity. To address the critical problem of Shortcut Learning, where models overfit to
background features rather than mosquito morphology, a rigorous background normal-
ization protocol was developed and validated. This strategy proved essential to ensure
the model’s generalization capability. The proposed system employs a sequence of
Convolutional Neural Networks (CNNs). For object detection, the YOLOv8n model
achieved a Mean Average Precision (mAP@0.5) of 99.44%. For species classifica-
tion, the YOLOv8n-cls architecture achieved a test accuracy of 98.18%, successfully
distinguishing the morphologically similar species of the Aedes genus. The complete
pipeline was optimized for the embedded device using the NCNN framework, achiev-
ing an inference latency of 3.3 seconds for classification. The results demonstrate that
high-precision automated vector surveillance is feasible on affordable hardware, offer-
ing a scalable solution for public health monitoring.

Keywords: Aedes aegypti, vector surveillance, convolutional neural networks
(CNNs), shortcut learning, edge artificial intelligence (Edge AI), raspberry pi.

vi

RESUMO

A vigilância epidemiológica doAedes aegypti é um componente crítico na prevenção de
arboviroses como dengue, Zika e chikungunya. No entanto, os métodos tradicionais de
identificação manual são trabalhosos, demorados e difíceis de escalar. Este trabalho
desenvolve um sistema de visão computacional embarcado e em tempo real para a
detecção e classificação automática das espécies: Aedes aegypti, Aedes albopictus e
Culex quinquefasciatus, otimizado para dispositivos de borda de baixo custo, especifi-
camente uma Raspberry Pi 4. Um conjunto de dados abrangente de 85.296 imagens,
representando 753 espécimes únicos de mosquitos, foi coletado e curado em duas
fases e locais distintos para garantir a diversidade biológica. Para abordar o problema
crítico do “Aprendizado de Atalho” (Shortcut Learning), onde os modelos se ajustam
excessivamente às características do fundo em vez da morfologia do mosquito, um rig-
oroso protocolo de normalização de fundo foi desenvolvido e validado. Essa estratégia
provou-se essencial para garantir a capacidade de generalização do modelo. O sis-
tema proposto utiliza uma sequência de Redes Neurais Convolucionais (CNNs). Para
a detecção de objetos, o modelo YOLOv8n alcançou uma Precisão Média (mAP@0.5)
de 99,44%. Para a classificação de espécies, a arquitetura YOLOv8n-cls atingiu uma
acurácia de teste de 98,18%, distinguindo com sucesso as espécies morfologicamente
semelhantes do gênero Aedes. O pipeline completo foi otimizado para o dispositivo
embarcado utilizando o framework NCNN, alcançando uma latência de inferência de
3,3 segundos para classificação. Os resultados demonstram que a vigilância veto-
rial automatizada de alta precisão é viável em hardware acessível, oferecendo uma
solução escalável para o monitoramento de saúde pública.

Palavras-chave: Aedes aegypti, vigilância vetorial, redes neurais convolucionais
(CNNs), inteligência artificial de borda (Edge AI), raspberry pi.

vii

LIST OF FIGURES
1 Epidemic curve of dengue cases and deaths as reported to WHO from Jan-

uary to April 2024 . 2

2 Conceptual illustration of mosquitoes processed by an AI-based detection

system . 9

3 Feature extraction performed over the image of a lion using VGG19 CNN ar-

chitecture. (a) Original picture of the lion (public domain, available at Pex-

els). (b) Feature maps generated by CNN . 11

4 Schematic diagram of CNN structure . 14

5 Rectified Linear Unit (ReLU) activation function graph. 14

6 Visual representation of Intersection over Union (IoU) on a dataset
sample. 18

7 Overview of the proposed classification pipeline . 34

8 Comparison between the original capture and the result of the
background normalization protocol: (a) Original image; (b) Im-
age after normalization protocol . 42

9 GradCAMvisualization demonstrating the effect of background
normalization . 45

10 Quality metrics evaluation: (a) ROC curves showing discrim-
inative power; (b) Correlation matrix demonstrating metric in-
dependence . 47

11 Comparison of detection models: mAP@0.5 vs. Inference La-
tency: (a) DetectionModels PerformanceComparison; (b) Precision-
Recall Curve (YOLOv8n) . 50

12 Classification performance analysis: (a) Training and valida-
tion loss/accuracy curves; (b) Receiver Operating Characteris-
tic (ROC) curves for each species. 53

13 Confusion Matrix for YOLOv8n-cls on Test Set 54

14 GradCAM visualization showing model activation on morpho-
logical features . 56

LIST OF TABLES
1 Comparison of Computer Vision Studies for Insect Identifica-

tion . 28

2 Summary of the rawdataset, describing image volume and spec-
imen count per species . 37

3 Preprocessing configurations for each detection model. 38

4 Quality filtering metrics and thresholds . 39

5 Performance comparison of candidate quality metrics (5-fold
CV). 48

6 Quality filter consistency across dataset partitions 48

7 Latency comparison of background removal models (Median
values). 49

8 Comparison of detection models (mAP and Inference Time) 50

9 Impact of dataset curation strategies on model performance . . . 51

10 Performance comparison of classification architectures on the
Test Set. 52

11 Detailed performance metrics by class (Test Set). 54

12 Detection performance onRaspberry Pi 4: Ultralytics vs. NCNN
57

13 Classification performance on Raspberry Pi 4 (NCNN frame-
work) . 57

14 Full pipeline latency and performance breakdownonRaspberry
Pi 4. 58

CONTENTS
1 Introduction . 2

2 Literature Review . 7
2.1 Theoretical Framework . 7

2.1.1Aedes aegypti Mosquito and its Epidemiological Importance. 7

2.1.2Pipeline of a Computer Vision System for Insect Identification. 8

2.1.3Artificial Neural Networks (ANNs) . 12

2.1.4Convolutional Neural Networks (CNNs) . 13

2.1.5Performance Evaluation Metrics . 16

2.1.6Challenges in Deep Learning: Shortcut Learning . 18

2.1.7Artificial Intelligence on Embedded Systems . 19

2.2 Related Works. 21

2.2.1Applications of AI in Public Health Systems . 21

2.2.2Applications of Computer Vision in Insect Identification 23

2.2.3Automated Classification of Aedes aegypti Using CNNs 25

2.2.4Use of AI in Low-Cost Devices . 26

2.2.5Critical Analysis of Reviewed Works . 28

3 Methodology . 34
3.1 Proposed Architecture Overview . 34

3.2 Dataset Collection and Curation . 35

3.2.1Data Acquisition . 35

3.2.2Dataset Composition and Bias Control . 36

3.3 Detection Module Development. 37

3.3.1Architecture Selection . 37

3.3.2Experimental Configuration . 38

3.4 Preprocessing and Bias Mitigation . 38

3.4.1Quality Extraction and Filtering . 39

3.4.2Validation of Quality Thresholds . 39

3.4.3Background Normalization via Synthetic Noise Injection 40

3.4.4Data Splitting Strategy . 42

3.5 Classification Module Development . 43

3.5.1Evaluated Architectures. 43

3.5.2Investigation of Shortcut Learning and Interpretability 43

4 Results and Discussion. 47
4.1 Preprocessing and Dataset Generation Analysis . 47

4.1.1Quality Filter Validation Results. 47

4.1.2Background Removal Model Selection . 48

4.2 Object Detector Evaluation . 49

4.2.1Comparative Analysis . 49

4.3 Species Classifier Evaluation . 51

4.3.1Bias Analysis and Shortcut Learning. 51

4.3.2Architecture Comparison and Model Selection . 52

4.3.3Error Analysis. 53

4.3.4Cross-Environment Validation . 54

4.3.5Interpretability Analysis . 55

4.4 Embedded Device Benchmark. 56

4.4.1Object Detection Inference . 56

4.4.2Background Normalization Bottleneck. 57

4.4.3Classification Inference . 57

4.4.4Full Pipeline Evaluation . 58

5 Conclusion. 60
5.1 Synthesis of Results . 60

5.2 Verification of Objectives. 60

5.3 Contributions . 61

5.4 Limitations . 62

5.5 Future Work. 63

References . 65

1

1
INTRODUCTION

Mosquito-borne diseases, known as arboviruses, remain one of the leading threats
to global public health. In this context, Aedes aegypti plays a central role as the pri-
mary vector of diseases such as dengue, Zika, and chikungunya. Figure 1 shows that
between January and April 2024, approximately 7.6 million probable cases of dengue
were reported worldwide, with over 3,000 deaths attributed to the disease, affecting
more than 80 countries in all World Health Organization regions [1]. Dengue alone
has shown an alarming growth trend: between 2000 and 2022, the number of reported
cases increasedmore than tenfold, rising from approximately 500,000 to over 5.2million
cases annually. In 2024, large-scale outbreaks have already been recorded in several
regions of Asia, Latin America, and the Caribbean, requiring urgent containment and
entomological surveillance measures.

Figure 1: Epidemic curve of dengue cases and deaths as reported to WHO from
January to April 2024

Source: [1].

In Brazil, the situation is equally alarming. The country bears one of the highest
global burdens of arboviral diseases, with recurrent outbreaks that have significant
social and economic impacts. In 2024, approximately 6.1 million probable cases of
dengue were reported, with more than 6,000 resulting in death. [2]. The high incidence

2

has been accompanied by increased hospitalizations and deaths, primarily affecting
populations in densely populated urban areas with inadequate sanitation infrastruc-
ture. The endemic presence of the Aedes aegypti mosquito, the primary vector of
these diseases, further exacerbates the crisis, which demands continuous monitoring
and control efforts.

In the Federal District, the capital of Brazil, the spread of dengue has also raised se-
rious concerns. In 2024, the Federal District Health Department reported an increase of
more than 900% in notified and probable dengue cases, increasing from 26,663 in 2023
to 274,802 in 2024. The fatality rate among severe cases reached 4.3%, according to
the weekly bulletin from the Emergency Operations Center (COE) [3]. Indicators ex-
ceed national averages on several metrics, with some administrative regions reaching
epidemic thresholds.

In general, the rapid proliferation of the vector is supported by local factors, including
a hot and humid climate, areas with accumulated waste and standing water, and a lack
of consistent vector surveillance measures.

In this context, vector surveillance emerges as an essential tool for preventive mea-
sures and rapid response to arboviral outbreaks. However, traditional methods of vec-
tor identification, despite being scientifically established, present significant limitations.
Thesemethods rely predominantly on the capture of adult mosquitoes using traps (such
as CDC traps or ovitraps), followed by the transportation of specimens to specialized
laboratories, where they undergo sorting and morphological identification by trained en-
tomologists. This identification process requires careful observation of specific anatom-
ical features under stereoscopic microscopes, including the pattern of scales on the
thorax and abdomen, the shape of the antennae and proboscis, and the presence of
white stripes on the legs—typical characteristics of Aedes aegypti [4].

Traditional methods are not only labor-intensive but also require specialized tech-
nical infrastructure and laboratory materials, making large-scale applications difficult,
especially in regions with limited operational capacity. According to [5], even in ur-
ban centers with adequate infrastructure, the average time between mosquito capture
and the issuance of entomological reports can exceed several days, compromising
the speed required for effective public health decisions. Moreover, the shortage of
professionals trained in medical entomology—particularly in remote or lower-income
areas—worsens the issue and limits the coverage of surveillance efforts.

These factors reveal the operational bottlenecks that hinder the scalability of con-
ventional vector surveillancemethods. In a scenario marked by an overburdened public
health system and a shortage of qualified field professionals, the development of inno-
vative, scalable, and low-cost solutions for the early and accurate identification of vec-
tors has become increasingly urgent. In this context, artificial intelligence-based tech-
nologies have gained prominence for offering automation, portability, and economic

3

feasibility. Recent studies have indicated that Convolutional Neural Networks (CNNs)
are capable of achieving over 90% accuracy in mosquito classification from images,
even when deployed on low-cost embedded devices such as the Raspberry Pi, as
demonstrated by [6] and [7]. These technological advances enable a shift from the
traditional centralized, lab-dependent surveillance model to a distributed, automated
system that responds more effectively to local dynamics of vector proliferation.

However, the effective deployment of these technologies faces a significant dichotomy.
Existing solutions typically fall into two categories: they either rely on deep, high-precision
architectures that demand computational resources unavailable in low-cost devices
(requiring cloud connectivity), or they utilize lightweight models that, when optimized
for the edge, often sacrifices the taxonomic accuracy required to distinguish between
morphologically similar species like Aedes aegypti and Aedes albopictus. Addressing
this trade-off—achieving high accuracy within the constraints of embedded hardware—
remains an open challenge necessary for scalable field surveillance.

Therefore, the general objective of this study is to develop an intelligent system ca-
pable of detecting and classifyingAedes aegyptimosquitoes from images, implemented
on a low-cost embedded device, to support vector monitoring and control strategies. To
accomplish this goal, the following specific objectives were defined:

• Collect and organize an image database containing specimens of Aedes aegypti
and other morphologically similar species, captured directly inside the proprietary
trap utilized in this study, ensuring the dataset represents the specific operational
conditions of the proposed solution.

• Develop and validate a background normalization preprocessing strategy to miti-
gate shortcut learning, ensuring that themodel’s generalization capability is driven
strictly by distinctive morphological features rather than spurious background cor-
relations.

• Implement an object detectionmodel, aiming for ameanAverage Precision (mAP@0.5)
greater than 95% in identifying mosquitoes within the trap.

• Develop a classification model capable of distinguishing Aedes aegypti from other
species with an accuracy greater than 95%, leveraging transfer learning tech-
niques.

• Optimize and deploy the computer vision pipeline on a Raspberry Pi 4, target-
ing an end-to-end accuracy greater than 90% and a viable inference latency for
discrete monitoring events of less than 5 seconds per sample.

The methodological procedure will involve image collection and annotation, train-
ing of Convolutional Neural Network (CNN) models, application of compression and

4

quantization techniques for embedded execution, and experimentation on a physical
embedded device. Tools such as Python, PyTorch, NCNN (Tencent), and OpenCV will
be employed throughout the process.

Beyond this introduction, the structure of this work is organized as follows:

• Literature Review: This section begins by presenting the epidemiological land-
scape of arboviral diseases transmitted by Aedes aegypti, contextualizing their
relevance to both global and national public health. It then introduces the foun-
dations of computer vision and Convolutional Neural Networks (CNNs), covering
topics from image acquisition and preprocessing to automatic feature extraction
and species classification, as well as specific challenges in deep learning such
as shortcut learning. It also details the performance metrics used to evaluate the
models, such as mAP, Accuracy, and Latency.

• Methodology: This section details the experimental design, including the con-
struction of an image dataset collected at the ArboControl insectary [8] of the
University of Brasília (UnB) and the Aggeu Magalhães Institute (Fiocruz) in Per-
nambuco [9]. It specifically details the background normalization protocol adopted
to prevent shortcut learning, the selection of YOLOv8 architectures, and the opti-
mization pipeline for the NCNN framework on embedded hardware.

• Results and Discussion: This section presents the experimental findings, starting
with an analysis of background removal techniques and the impact of the back-
ground normalization protocol. It then details the performance of the object detec-
tor (YOLOv8n) and the species classifier (YOLOv8n-cls). Finally, it benchmarks
the complete embedded system on the Raspberry Pi 4, evaluating inference la-
tency, throughput, and end-to-end accuracy.

• Conclusion: This section summarizes the main contributions, discussing the ef-
fectiveness of the proposed background normalization protocol and the feasibility
of the embedded system. It also outlines limitations and suggests future research
directions, such as sex classification and non-AI background removal methods.

5

2

2
LITERATURE REVIEW

The literature review aims to present the key concepts, theoretical foundations, and
prior studies that support the development of this work. It is divided into two sections:
the Theoretical Framework and Related Works.

2.1 THEORETICAL FRAMEWORK
This section presents the main concepts and technologies required for understand-

ing and developing the proposed system.

2.1.1 Aedes aegypti Mosquito and its Epidemiological Importance

Aedes aegypti is a holometabolous insect undergoing the developmental stages of
egg, larva (four instars), pupa, and adult [10]. Its eggs are exceptionally resilient, capa-
ble of withstanding desiccation, and remaining viable for approximately one year, which
complicates control efforts [10]. This species exhibits behavior highly adapted to urban
and domestic environments, with a strong preference for artificial water containers for
oviposition and the ability to complete its life cycle in approximately 7–10 days under
favorable conditions.

AdultAedes aegyptimosquitoes are relatively small, black in color, with silvery-white
scales arranged in a characteristic pattern (e.g., a lyre-shaped marking on the dorsal
thorax) [11]. It differs from similar species based on these scale patterns. Behaviorally,
Aedes aegypti is highly anthropophilic—it feeds preferentially on human blood even in
the presence of alternative hosts—and frequently bites multiple times within a single
gonotrophic cycle [11]. This multiple-bite behavior increases its vectorial potential by
amplifying the chances of pathogen transmission. Furthermore, it is a diurnal/crepus-
cular and domestic mosquito, often found inside or around human dwellings, where it
rests and seeks hosts; it is commonly found just a few meters from houses and easily
enters homes [11]. Such behaviors (anthropophily, diurnal activity near humans, and
repeated biting) contribute significantly to its efficiency as a disease vector.

Aedes aegypti stands out as the principal vector of several arboviruses of significant
public health concern, including the viruses responsible for dengue, Zika, chikungunya,
and yellow fever [12]. Review studies on vector competence show that virtually no
population of this mosquito is completely refractory to infection by these viruses—Aedes

7

aegypti populations worldwide are highly susceptible to dengue, Zika, and chikungunya,
with no evidence of full natural resistance [12]. This high vector competence, combined
with its strong adaptation to urban environments and close association with humans,
results in a significant epidemiological impact. It is estimated that approximately 3.9
billion people are at risk of dengue infection across more than 120 countries where
Aedes aegypti is present [13]. In recent years, the incidence of these arboviral diseases
has risen sharply—for instance, in the Americas alone, 4.6 million dengue cases were
reported in 2023 [13]. Modeling studies project the continued geographic expansion of
Aedes aegypti due to climatic and anthropogenic factors, with potential colonization of
up to 162 countries by 2080 [13]. In summary, the combination of a prolific life cycle,
ecological plasticity (ability to survive in varied breeding sites and urban settings), and
anthropophilic behavior makes Aedes aegypti an extremely relevant epidemiological
vector associated with recurrent epidemics of dengue, Zika, chikungunya, and other
arboviruses in tropical and subtropical regions.

2.1.2 Pipeline of a Computer Vision System for Insect Identification

Accurate insect species identification is a fundamental pillar in various fields, in-
cluding agriculture, ecology, and, most critically, public health, where disease vector
surveillance is essential. Traditionally, such identification relies on morphological anal-
ysis performed by specialized entomologists—a process that, while accurate, can be
time-consuming, costly, and limited by the availability of experts [14]. Given these chal-
lenges, computer vision has emerged as a promising tool for automating and scaling
insect identification, offering the potential for more efficient and responsive monitoring
systems. This section explores the core concepts of computer vision as applied to this
task. A computer vision system for insect identification typically involves a sequence of
stages, from image capture to final species classification. These stages aim to replicate
and enhance the human visual analysis process using algorithms designed to process
and interpret visual data [15].

• Image Acquisition: At the core of any computer vision system is the image itself.
The quality of the acquired image is crucial for the downstream performance of
the system. Factors such as resolution, lighting, focus, and camera perspective
directly influence the amount of helpful information available for analysis [15]. In
the context of insect identification, image acquisition may occur in controlled labo-
ratory environments using cameras coupled with microscopes or stereoscopes or
in the field through photographic cameras embedded in traps or mobile devices.
Variability in field conditions (e.g., unstable natural lighting, complex backgrounds)
presents additional challenges that must be considered in system design [14].

• Object Detection: Following image acquisition, the system must identify and lo-
cate the insects within the captured scene. In standard image classification tasks,

8

it is generally assumed that there is only one object of interest per image. How-
ever, as illustrated in Fig. 2, in field monitoring scenarios, it is common for several
mosquitoes—or even other insects—to appear simultaneously in the same image.
Therefore, object detection algorithms are employed to individually separate the
specimens, generating bounding boxes that delimit each insect. This step is cru-
cial to enable accurate counting and to isolate the specimens for the subsequent
classification stages.

Figure 2: Conceptual illustration of mosquitoes processed by an AI-based detection
system

Source: own elaboration.

Among the main object detection models, Faster R-CNN [16] stands out by adopt-
ing a two-stage approach—region proposal followed by classification, achieving
high accuracy at the cost of higher computational demand. In contrast, single-
stage models such as SSD MobileNetV2 (Single Shot MultiBox Detector) [17]
and YOLO (You Only Look Once) [18] perform detection in a single pass, making
them more suitable for real-time applications. These models offer good accu-
racy and are widely adopted in embedded scenarios due to their light weight and
ease of implementation. More recently, EfficientDet [19] has gained attention for
combining high accuracy with low computational consumption, using a scalable
architecture based on EfficientNet and an efficient feature fusion module (BiFPN).

These models are evaluated using metrics such as IoU (Intersection over Union)
and mAP (mean Average Precision), which respectively measure the overlap be-
tween predicted and actual bounding boxes and the average detection perfor-
mance across categories. For applications such as this—fine-grained entomolog-

9

ical classification in the field—it is essential to choose architectures that balance
strong generalization capabilities, low latency, and compatibility with low-cost de-
vices, such as the Raspberry Pi.

• Image Preprocessing: Once the objects of interest have been detected and
their bounding boxes defined, the isolated regions (ROIs) undergo a critical pre-
processing phase. The goal is to standardize the data and ensure that the sub-
sequent classification model learns from relevant information. The first step in-
volves a Quality Filtering mechanism, which evaluates quantitative metrics—such
as Edge Density, Michelson Contrast, and Contour Ratio—to automatically re-
ject low-quality samples (e.g., blurred, low-contrast, or occluded images) that
could degrade model performance. Following selection, Photometric Normal-
ization techniques are applied. Contrast Limited Adaptive Histogram Equaliza-
tion [20] (CLAHE) is employed to enhance local contrast and reveal morphological
textures, mitigating lighting variations common in field traps. Finally, to prevent
the model from learning spurious environmental patterns (shortcut learning), a
Background Removal strategy is adopted. This involves segmenting the insect
and replacing the original background with synthetic noise, ensuring the model
focuses exclusively on the insect’s morphological features.

Following these standardization steps, the data is prepared for the deep learning
model. To improve the model’s robustness and generalization capability, Data
Augmentation is applied. This process artificially expands the training set by
applying random geometric and photometric transformations such as rotations,
zooming, and horizontal flips. These operations simulate the various ways the
mosquito may appear to the camera, making the final model more invariant to
positional and orientational variations [14]. Finally, each image crop is resized
to match the input dimensions required by the CNN architecture (e.g., 224×224
pixels), and its pixel values are normalized to a standard numerical range, such
as [0, 1] or [-1, 1]—a necessary condition for stable and efficient deep neural
network optimization [14].

• Feature Extraction: Feature extraction is the process of identifying and quantify-
ing distinctive attributes of an insect that enable its classification. Historically, this
step relied on hand-crafted feature engineering, in which experts defined which
morphological traits (e.g., wing shape, body color patterns, exoskeleton texture,
proportions between body segments) would be measured. Classical computer
vision algorithms, such as edge detectors (e.g., Canny), texture descriptors (e.g.,
Local Binary Patterns – LBP, Gabor filters), and shape descriptors (e.g., Hu mo-
ments, Fourier contours), were employed to extract quantitative information from
insect images [15]. With the advent of deep learning, especially Convolutional

10

Neural Networks (CNNs), feature extraction has undergone a profound transfor-
mation. CNNs are capable of automatically learning the most discriminative fea-
tures directly from raw input data (image pixels), eliminating the need for manual
attribute selection and encoding [14]. During training, the network adjusts its in-
ternal filters (kernels) to detect hierarchical patterns—ranging from simple edges
and textures in the initial layers to complex shapes and objects in the deeper lay-
ers — explicitly optimized for the target classification task, as illustrated in Fig.
3.

Figure 3: Feature extraction performed over the image of a lion using VGG19 CNN
architecture. (a) Original picture of the lion (public domain, available at Pexels). (b)

Feature maps generated by CNN

(a) (b)

Source: adapted from [21].

• Species Classification: Once the features have been extracted, a classification
model is used to assign a species label to the insect. When using manually engi-
neered features, traditional machine learning algorithms such as Support Vector
Machines (SVMs), Random Forests, k-Nearest Neighbors (k-NN), or simpler Ar-
tificial Neural Networks (ANNs) can be trained to perform this task [15]. These
classifiers learn to map the extracted feature set to the different species classes

11

present in the training dataset.

In the case of CNNs, feature extraction and classification are often integrated
into a single end-to-end architecture. The convolutional and pooling layers act
as feature extractors, while the final layers of the network (typically fully con-
nected layers followed by an activation function such as softmax) are respon-
sible for classification [14]. This integrated approach has demonstrated state-of-
the-art performance in various visual recognition tasks, including species identi-
fication. The performance of any insect identification system based on machine
learning—particularly those employing deep learning—is inherently dependent
on the quality and quantity of the data used for training. A large and representa-
tive dataset is required, containing images of various species of interest that are
adequately labeled by domain experts [14]. Building datasets tailored to insect
species presents specific challenges, which are outlined below:

• Intraspecies Variability: Individuals of the same species may exhibit variations
in size, color, and shape due to factors such as age, sex, diet, or geographic
location

• Interspecies Similarity: Different but closely related species may be morpho-
logically very similar, requiring the capture of subtle distinguishing details.

• Field Image Quality: Images acquired in field conditions may suffer from incon-
sistent lighting, partial occlusions, physical damage to specimens (e.g., missing
legs or antennae), and complex backgrounds.

• Labeling Scalability: Properly annotating large volumes of images is a time-
consuming and expertly demanding task.

Techniques such as data augmentation, which consists of generating new train-
ing samples by applying transformations to existing images (e.g., rotations, zoom-
ing, brightness adjustments), can help increase dataset diversity and model robust-
ness [14].

2.1.3 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are computational models inspired by the biolog-
ical neural networks that constitute animal brains [22]. They are designed to recognize
patterns and solve complex problems by learning from data. The fundamental unit of an
ANN is the artificial neuron, or perceptron, which mathematically models the function
of a biological neuron.

Each neuron receives a set of inputs, multiplies them by specific weights, sums
them up with a bias term, and passes the result through a non-linear activation function
to produce an output. This process can be described by Eq. 1:

12

y = ϕ

(
n∑

i=1

wixi + b

)
(1)

where xi are the inputs, wi are the weights, b is the bias, and ϕ is the activation
function.

A single neuron has limited computational power. However, when organized into
layers—an input layer, one or more hidden layers, and an output layer—they form a
Multilayer Perceptron (MLP). MLPs are capable of approximating any continuous func-
tion, a property known as the Universal Approximation Theorem [23].

The learning process in ANNs involves adjusting the weights and biases to mini-
mize the difference between the predicted output and the actual target. This is typically
achieved using the backpropagation algorithm combined with an optimization method
such as Stochastic Gradient Descent (SGD). During training, data flows forward through
the network (forward propagation) to calculate the loss, and then error gradients are
propagated backward (backpropagation) to update the parameters.

While ANNs are powerful for many tasks, they face significant challenges when
applied directly to image data. To process an image with an MLP, the 2D grid of pixels
must be flattened into a 1D vector. This operation destroys the spatial structure and
local correlations present in the image (e.g., the relationship between adjacent pixels
forming an edge). Furthermore, for high-resolution images, the number of trainable
parameters in a fully connected network explodes, leading to high computational costs
and a high risk of overfitting. These limitations paved the way for the development
of Convolutional Neural Networks, which are specifically designed to preserve spatial
hierarchies in visual data.

2.1.4 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) represent a specialized class of deep learn-
ing models designed for processing and analyzing grid-structured data, such as images
and videos [14]. Their design is bioinspired, emulating aspects of the human visual cor-
tex, and their effectiveness lies in the ability to learn hierarchical features directly from
the data automatically.

A CNN is defined as a multilayer neural network distinguished by the use of three
main types of layers: convolutional, pooling (subsampling), and fully connected layers.
The structure of a CNN is illustrated in Fig. 4.

13

Figure 4: Schematic diagram of CNN structure

Source: [24].

Convolutional layers form the core of CNNs. Unlike traditional neural networks with
full connectivity, neurons in a convolutional layer are connected only to a small region
of the previous layer, known as the receptive field [14]. A key element is weight sharing:
the same set of weights, forming a filter or kernel, slides over the entire input image,
allowing the network to detect the same pattern (e.g., a vertical edge) regardless of its
position in the image. This not only drastically reduces the number of parameters to be
learned but also provides the network with a degree of translation invariance [14].

The 2D discrete convolution operation between an input I (image or feature map)
and a kernel K para gerar um mapa de características de saída O pode ser definida
pela Eq. 2.

O(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2)

Figure 5: Rectified Linear Unit (ReLU) activation function graph

Source: own elaboration.

14

Parameters such as stride (the step size of the kernel) and padding (filling the input
borders) are used to control the spatial dimensions of the resulting feature maps [14].

After the convolution operation, a non-linear activation function is applied to each
element of the feature map. Non-linearity is essential for the network to learn complex
representations, as stacking multiple linear layers would be equivalent to a single linear
transformation [14]. An example is the ReLU (Rectified Linear Unit) function, shown in
Fig. 5, which is widely used due to its simplicity and effectiveness in mitigating the
vanishing gradient problem. It is mathematically defined in Eq. 3.

f(x) = max(0, x) (3)

The pooling layers aim to reduce the spatial dimensionality of the feature maps,
decreasing the number of parameters and computational costs in the network while
also providing a degree of invariance to small translations and distortions [14].

After several convolutional and pooling layers, which progressively extract increas-
ingly complex and abstract features (from simple edges and textures in the initial layers
to object parts or entire objects in the deeper layers), the architecture typically ends
with one or more fully connected layers. In these layers, each neuron is connected
to all activations from the previous layer, similar to a traditional multilayer neural net-
work [14]. The final fully connected layer typically has several neurons equal to the
number of classes. It utilizes an activation function, such as softmax, to produce a
probability distribution over the classes.

When training end-to-end, the network itself learns the most relevant features, elim-
inating the need for manual feature engineering. This ability to automatically and ro-
bustly learn representations is what has made Convolutional Neural Networks (CNNs)
highly successful in computer vision tasks, outperforming traditional vision methodolo-
gies across numerous challenges.

The resurgence of CNNs began with the remarkable victory of the AlexNet model in
the 2012 ImageNet challenge, demonstrating far superior performance in image classi-
fication compared to previous methods [25]. Since then, a series of increasingly deeper
and more efficient architectures have been proposed to improve accuracy in vision
tasks. Notable examples include the VGG-16/19 networks [26], which standardized the
use of multiple stacked convolutional layers with small filters (3x3); GoogLeNet/Incep-
tion [27], which introduced blocks with multiple parallel convolutions; and ResNets [28].

ResNets introduced the innovative concept of shortcut residual connections, allow-
ing part of the information flow to “skip” intermediate layers [28]. This simple idea solved
the vanishing gradient problem in very deep networks, enabling the stable training of
models with more than 100 layers [28]. ResNet-152 (with 152 layers) won the ILSVRC
2015 competition, achieving record-breaking accuracy and proving that ultra-deep net-

15

works are feasible when shortcuts are added to facilitate gradient propagation [28].
Other notable architectures include Squeeze-and-Excitation Networks (SENets), which
introduced channel-wise attention mechanisms, and DenseNets [29], which connect
each layer to all previous ones to maximize feature reuse. As a result, the literature
highlights a dramatic evolution in CNNs over the past decade – they have become
deeper, with sophisticated modular blocks and training optimization strategies, leading
to leaps in image recognition performance [25].

A significant challenge that emerged was using CNNs on resource-constrained de-
vices (such as smartphones and embedded systems). To address this, optimized archi-
tectures were developed to reduce computational cost with minimal loss of accuracy.
A prominent example is MobileNet, proposed by [30] as a family of lightweight convolu-
tional neural networks (CNNs) for mobile and embedded applications. MobileNet intro-
duced depth-wise separable convolutions, which decompose the traditional convolution
operation into two steps – spatial filtering by channel and then pointwise channel com-
bination – drastically reducing the number of parameters and operations required [30].
With its compact architecture and configurable width and resolution hyperparameters,
it is possible to obtain small and fast models suitable for low-power hardware. Despite
its simplicity, MobileNet models achieved outstanding performance in image classifica-
tion (e.g., 70% Top-1 accuracy on ImageNet for MobileNetV1), becoming a benchmark
for computer vision on edge devices. Other efficiency-focused architectures include
ShuffleNet and EfficientNet [31], which apply compound scaling principles to optimize
the accuracy-cost ratio by adjusting depth, width, and resolution.

In summary, modern CNNs range from profound and accuratemodels (VGG, ResNet,
Inception, etc.) to compact and fast models (MobileNets and variants), all based on
the same fundamental principles of convolution, pooling and hierarchical feature learn-
ing [30]. This theoretical framework provides the basis for selecting architectures that
match the project’s needs – for instance, choosing a lightweight model like MobileNet or
a compressed variant, given the hardware constraints (e.g., Raspberry Pi) in the study
at hand.

2.1.5 Performance Evaluation Metrics

To quantitatively assess the effectiveness of the developed models, standard met-
rics from the computer vision literature are employed. These metrics provide an objec-
tive basis for comparing different architectures and validating the system’s reliability.

• Classification Metrics: For the classification stage, performance is evaluated
based on the Confusion Matrix, which categorizes predictions into four types:
True Positives (TP), True Negatives (TN), False Positives (FP), and False Nega-
tives (FN). From these, the following metrics are derived [32]:

◦ Accuracy: The ratio of correctly predicted observations to the total obser-

16

vations. It is the most intuitive performance measure but can be misleading
in imbalanced datasets, as defined in Eq. 4.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

◦ Precision: The ratio of correctly predicted positive observations to the total
predicted positives. It indicates the model’s ability to avoid false positives,
as shown in Eq. 5.

Precision =
TP

TP + FP
(5)

◦ Recall (Sensitivity): The ratio of correctly predicted positive observations
to the all observations in the actual class. It measures the model’s ability to
find all relevant cases, described by Eq. 6.

Recall =
TP

TP + FN
(6)

◦ F1-Score: The weighted average of Precision and Recall. It is particularly
useful when seeking a balance between precision and recall, or when the
class distribution is uneven, as calculated in Eq. 7.

F1 = 2 · Precision ·Recall

Precision+Recall
(7)

• Detection Metrics: For the object detection stage, evaluation is more complex
as it involves both localizing the object and classifying it. The primary metrics
used are [33]:

◦ Intersection over Union (IoU): A metric used to evaluate the accuracy of
an object detector on a particular dataset. It computes the area of overlap
between the predicted bounding box (Bpred) and the ground truth bounding
box (Bgt), divided by the area of their union, as formulated in Eq. 8.

IoU =
Area(Bpred ∩ Bgt)

Area(Bpred ∪ Bgt)
(8)

17

Figure 6: Visual representation of Intersection over Union (IoU) on a dataset sample

Source: own elaboration.

Figure 6 illustrates a raw dataset sample showing the ground-truth bounding
box (Bgt), the predicted bounding box (Bpred), and their intersection area
used to compute the Intersection over Union (IoU) metric (IoU) for detection
evaluation.

◦ Mean Average Precision (mAP): The standard metric for object detection.
It calculates the average precision (AP) for each class and then averages
these values. The AP is the area under the Precision-Recall curve, com-
puted at specific IoU thresholds (e.g., mAP@0.5 considers a detection cor-
rect if IoU ≥ 0.5). This metric provides a single score that summarizes the
model’s performance across all classes and confidence thresholds.

2.1.6 Challenges in Deep Learning: Shortcut Learning

Despite the remarkable success of Convolutional Neural Networks, they are sus-
ceptible to a phenomenon known as “Shortcut Learning.” This occurs when a model
achieves high performance on a specific dataset by learning decision rules that are
computationally simple but semantically irrelevant to the intended task [34]. Instead of
learning the complex morphological features that define an object (e.g., the lyre-shaped

18

markings on the thorax of Aedes aegypti), the network may rely on spurious correla-
tions, such as the background color, lighting conditions, or specific watermarks present
in the training images.

Research indicates that shortcut learning is a significant cause of the lack of gen-
eralization in deep learning models [34]. A classic example is a classifier trained to
recognize cows that fails when the cow is not on a green pasture, simply because it
learned to associate the texture of grass with the class “cow” rather than the animal
itself. In the context of entomological surveillance, this risk is critical. If a model is
trained on images where Aedes aegypti always appears in a specific laboratory cage
while other species are photographed in different environments, the network may learn
to classify the “cage” rather than the mosquito. This leads to a system that performs
perfectly during validation but fails when deployed in the field or a new environment.
Addressing this challenge requires rigorous dataset curation and bias mitigation strate-
gies, such as background removal or domain randomization, to ensure themodel learns
robust and generalizable features.

2.1.7 Artificial Intelligence on Embedded Systems

Embedded systems are computing systems designed to perform dedicated func-
tions within larger mechanical or electrical systems, often with real-time computing con-
straints [35]. Unlike general-purpose computers (such as PCs or servers), which are
designed to handle a wide range of tasks, embedded systems are optimized for specific
applications, prioritizing efficiency, reliability, and low power consumption. Common
examples range from simple microcontrollers in household appliances (e.g., washing
machines, microwaves) to complex systems in automotive control units (ECUs), medi-
cal devices (pacemakers), and industrial automation robots.

Embedded devices, such as the Raspberry Pi, offer an affordable platform for the
local deployment of artificial intelligence algorithms; however, they impose severe hard-
ware limitations. [36] observed a growing trend toward decentralizing deep learning ap-
plications onto mobile/embedded devices to meet real-time and privacy requirements
(avoiding cloud dependency) [36]. However, they emphasize that the limited resources
of these devices—computational power, memory, and energy—make it challenging to
run conventional deep neural network models, which demand high computational and
storage capacity [36].

According to [36], the main technical difficulties in enabling deep learning at the
edge include slow inference speed, overheating, high power consumption, and the in-
ability to train complex models on-device. To mitigate these issues, several optimiza-
tion techniques have been employed, including network pruning (removing irrelevant
weights and connections) and weight quantization (reducing numerical precision) to
shrink model size [36], as well as architecture design strategies focused on efficiency

19

(e.g., separable layers, inverted blocks). In parallel, dedicated hardware solutions
have gained traction—such as mobile GPUs, FPGAs, and specialized ASICs (NPUs,
TPUs)—alongside optimized libraries and frameworks (e.g., TFLite, OpenVINO, ARM
NN) that leverage these resources to accelerate inference under constrained environ-
ments [36]. This body of research suggests that although challenging, embedded AI
is feasible when combining lightweight models, network compression, and accelerator
hardware support.

The Raspberry Pi, especially in its newer versions (e.g., Pi 4 or Pi 5), has been
used as a testing platform for neural network inference in the field. Practical applica-
tions, such as facial recognition systems, object classification, or obstacle detection
in robotics, have been implemented on the Raspberry Pi, typically using lightweight
network versions (often trained in the cloud and deployed for local inference), which
achieve satisfactory real-time performance at modest scales. However, it is essential
to emphasize that on a typical Raspberry Pi (e.g., ARM quad-core CPU at 1.5 GHz,
without a powerful GPU), deep neural networks usually do not achieve high FPS rates
for complex vision tasks – model optimization and possible accuracy trade-offs may be
necessary to reach the desired speed [36].

A complementary strategy to enable AI on embedded systems is to add AI accel-
eration coprocessors. In the Raspberry Pi ecosystem, for instance, one can connect
modules like the Google Coral USB Accelerator, which contains an edge TPU (Tensor
Processing Unit) dedicated to neural network inference. As reported by [37], adding a
Coral accelerator via USB allows the Raspberry Pi to perform deep learning inference
at high speeds and with much greater efficiency than the CPU, enabling previously im-
practical applications [37]. This Edge TPU can process vision models (e.g., image de-
tection) in near real-time with low energy consumption, making it ideal for field projects
that require quick response and continuous operation [37].

The combination of Raspberry Pi and accelerators has been utilized in industrial
and IoT contexts, such as predictive maintenance image analysis or real-time agricul-
tural pest recognition, where the embedded device must make decisions locally without
relying on the cloud [37]. Even with accelerators, concerns remain regarding energy
consumption and thermal dissipation in long-term AI deployments. In such cases, it is
essential to strike a balance between system performance and autonomy, especially
when powered by batteries or solar cells.

In addition to model optimization and the use of specialized hardware, enabling
artificial intelligence on embedded devices heavily depends on software frameworks
designed for resource-constrained environments. Notable examples include LiteRT
(formerly TensorFlow Lite) and OpenCV, both of which are widely used on platforms
such as the Raspberry Pi. LiteRT is Google’s on-device AI runtime environment, which
enables TensorFlow models to be converted and optimized through techniques such

20

as quantization and pruning, thereby reducing model size and accelerating inference.
Its compact interpreter can delegate operations to accelerators like GPUs and TPUs –
e.g., the Google Coral – maximizing performance and energy efficiency [14].

Complementarily, OpenCV (Open Source Computer Vision Library) offers a compre-
hensive collection of optimized algorithms for various computer vision tasks, including
image preprocessing, feature extraction, object tracking, and geometric transforma-
tions [15]. It also features its deep neural network module (DNN), which is compatible
with models trained in various frameworks. The integration of LiteRT and OpenCV en-
ables the construction of efficient and flexible pipelines, combining lightweight inference
with robust visual processing – a crucial combination for the development of intelligent
embedded systems.

Thus, the literature and use cases suggest that embedded artificial intelligence is a
rapidly evolving field. Model compression techniques and efficient architectures, com-
bined with specialized hardware like edge TPUs and supported by optimized frame-
works, are overcoming processing and energy barriers, allowing compact devices like
the Raspberry Pi to run convolutional neural network algorithms for complex tasks (com-
puter vision, pattern recognition, etc.) directly “at the edge,” in field environments. This
paves the way for low-cost solutions in environmental monitoring, healthcare, agricul-
ture, and other fields. However, it requires a solid theoretical foundation to guide system
design decisions for the intelligent system being developed.

2.2 RELATED WORKS

2.2.1 Applications of AI in Public Health Systems

AI-based intelligent systems are gaining ground in public health, whether to assist in
medical diagnoses, conduct epidemiological surveillance, or predict disease outbreaks.
One of the most advanced areas is the application of machine learning to analyze large
volumes of epidemiological and environmental data, enabling the detection of early
signs of outbreaks. Predictive models for dengue, for example, have evolved from
simple statistical techniques to more sophisticated machine learning approaches. A
recent systematic review found that approximately 40% of dengue outbreak prediction
models currently utilize machine learning techniques, particularly those developed in
recent years [38].

These models use climate data (temperature, rainfall, humidity, etc.), demographic
information, and case history to learn patterns that precede incidence surges. In gen-
eral, they have demonstrated performance gains over traditional models while also
providing insights into risk factors. For example, a study in Bangladesh combined in-
terpretable decision tree algorithms (Random Forest, XGBoost, LightGBM) with data
from 2000 to 2021 to build a dengue alert system. The model detected non-linear ef-

21

fects of climate variables and identified key factors (land use, population density, mini-
mum temperature) associated with outbreaks [39]. Notably, the best-performing model
(LightGBM) proved effective in forecasting dengue cases in advance, functioning as an
alert system that can improve understanding of outbreak-triggering factors [39]. Accord-
ing to the authors, this system provides a sophisticated analytical framework for public
health, enabling authorities to anticipate epidemics and implement control strategies
proactively [39].

In Brazil, similar approaches have been explored. Recurrent Neural Networks (RNNs)
of the Long Short-Term Memory (LSTM) type have been trained to predict weekly
dengue cases in various cities, successfully detecting early signs of potential outbreaks
[24]. These deep learning models can capture complex temporal dependencies in in-
cidence and climate data, outperforming conventional methods in data-rich scenarios.

There are also efforts to apply explainable machine learning—for example, models
that indicate the contribution of each variable (rainfall, temperature, mosquito indices)
to the projected risk—which aids transparency and acceptance of forecasts [40]. Big
Data and AI tools have also been used to indirectly monitor diseases. During Zika and
chikungunya outbreaks, researchers analyzed internet search data and social media
mentions, combined with predictive models, to estimate the real-time spread of these
arboviruses, complementing traditional notification systems.

Another crucial AI application in public health is the automated epidemiological
surveillance of vectors and reservoirs. Besides dengue, similar systems have been
proposed for malaria, West Nile fever, and other zoonoses. Projects such as Microsoft
Premonition exemplify a “digital epidemiology” trend by predicting risks using AI from
automated vector monitoring, with cloud-based algorithms analyzing these signals to
forecast biological threats, much like weather forecasts are made [41]. By combining
robotics, IoT, and AI, Premonition aims to identify abnormal increases in vector popu-
lations or the presence of pathogens in those vectors before outbreaks occur [41]. The
platform has already examined trillions of genetic sequences in captured mosquitoes,
identifying viruses and other circulating agents in a given region [41]. In practice, such a
system could trigger early alerts. For instance, if captured mosquitoes start carrying an
emerging virus, authorities would be notified to intensify vector control or public health
actions before human cases spike.

At the local level, public health agencies have adopted AI in pilot surveillance projects.
In Texas (USA), the Harris County Health Department integrated automated mosquito
traps that, with the help of AI, identify target species (vectors of Zika, dengue, West
Nile, etc.) and record environmental data in real-time for each capture [42]. These
data feed into geographic information systems that map the spatial and temporal distri-
bution of vectors, allowing control teams to be directed precisely to high-risk areas and
times [42]. The observed benefits include faster and more accurate information about

22

where to focus spraying or campaigns, saving resources, and increasing the impact of
interventions [42]. Similarly, in Brazil and other tropical countries, it is envisioned that
smart connected traps (such as [43]) could complement the fieldwork of health agents.
Instead of manual periodic visits to ovitraps or visual larva readings, AI could provide
continuous 24/7 monitoring, automatically alerting teams at the first sign of Aedes ae-
gypti infestation increase in a given area. This would expedite transmission-blocking
actions and the elimination of breeding sites.

Beyond mosquito surveillance, smartphones and AI have been employed in diag-
nosing and monitoring infectious diseases. For instance, computer vision algorithms
analyze exam images (such as chest X-rays for tuberculosis detection, blood smears
for malaria, and skin lesions for identifying leishmaniasis) with accuracy comparable
to that of specialists, assisting in diagnosis in regions with limited medical personnel.
In arboviruses, AI studies already support the differential diagnosis of dengue, Zika,
and chikungunya based on symptom profiles and laboratory results, probabilistically
indicating the most likely disease to inform clinical decision-making. Predictive models
have also been used to forecast yellow fever outbreaks in specific regions by combining
data on primate epizootics, vaccination coverage, and entomological indices, helping
prioritize preventive campaigns in these areas [5].

These examples illustrate that AI is becoming a valuable tool in public health, im-
proving the ability to predict and respond to infectious diseases [39]. However, signifi-
cant challenges remain: most models depend on high-quality and up-to-date data, and
in many locations, underreporting or a lack of granular data reduces the effectiveness
of forecasts. Moreover, integrating AI systems into public health workflows requires
staff training and trust in the results. Ethical and privacy concerns (e.g., using cell-
phone or social media data to track diseases) must also be addressed. In summary,
although AI does not yet replace traditional epidemiology, it is becoming a powerful ally,
adding speed and predictive intelligence to infectious disease surveillance and control
systems.

2.2.2 Applications of Computer Vision in Insect Identification

Recent research has demonstrated the potential of computer vision algorithms, par-
ticularly deep learning, in classifying mosquito species using images. [7] developed a
convolutional neural network (CNN)-based model integrated into a multi-stage system
for mosquito identification using images, addressing the open-set recognition problem
where species not present during training must be handled [7]. Using a dataset of
2,696 specimens across 67 mosquito species, the model achieved an accuracy of ap-
proximately 97% in closed-set classification, where all task classes are previously rep-
resented in the training data—meaning the system only needs to distinguish among
known species [7]. Published in Scientific Reports, the study highlights that computer

23

vision solutions can be both accurate and scalable for automating the identification of
field-collected mosquitoes, thus supporting entomological surveillance and vector con-
trol programs [7].

In line with the advances in using CNNs for entomology, [5] proposed an innova-
tive solution for vector surveillance of mosquitoes that transmit malaria. The system,
named VectorBrain, features a two-stage architecture: first, the YOLOv5 (small ver-
sion) model performs mosquito body detection and cropping, removing background
noise and optimizing the region of interest; then, the cropped images are processed by
a custom EfficientNet-B1 network, which is configured for multi-task learning. Experi-
ments were conducted using images from the VectorCAM dataset [4], which comprises
4,195 specimens photographed under real-world conditions by community agents in
three endemic African countries (Uganda, Ghana, and Zambia), resulting in a total of
17,612 multi-angle images. The system achieved 94.4% accuracy (macro F1-score of
94.1%) in species classification, 97% (macro F1-score of 95.1%) in sex identification,
and 83.2% (macro F1-score of 81.6%) in abdominal status inference. In addition to high
performance, the model was optimized for on-device execution in low-cost hardware,
running offline and in real-time—reinforcing its applicability in field scenarios with lim-
ited infrastructure. Thus, VectorBrain represents a promising milestone for automating
critical entomological tasks, enabling scalability, agility, and accuracy in vector control
operations in Sub-Saharan Africa [5].

Furthermore, [44] demonstrated the effectiveness of CNNs in identifying parasitoid
hymenopterans using only specific morphological traits. In their experiment, a CNN
was trained (via transfer learning) to classify 57 genera of Braconidae wasps based on
forewing images [44]. Despite a relatively small training set (488 images), the model
achieved 96.7%accuracy in cross-validation classification, proving that taxonomic iden-
tification of insects is feasible using images of subtle morphological structures [44]. The
authors highlighted that the automated approach performed comparably to human ex-
perts, underscoring the potential of computer vision in aiding the identification of hyper-
diverse insect groups in entomology [44].

Beyond classification under controlled or lab conditions, computer vision techniques
have progressed in detecting insects in natural environments. [45] developed a system
combining cameras and deep learning models (YOLO algorithms) to monitor pollinators
and pests in real-time in the field [45]. They compiled a large dataset of about 30,000
insect annotations (bees, hoverflies, butterflies, beetles, etc.) captured in over 2 million
images from time-lapse cameras positioned above flowers [45]. The trained detection
models achieved a mean precision of 92.7% and recall of 93.8% for the simultaneous
detection and classification of nine functionally relevant insect groups [45]. Notably,
the best-performing model (YOLOv5-based) maintained good performance even when
facing previously unseen individuals—detecting around 80% of these “unknown” in-

24

sects, often classifying them as a close species [45]. These results demonstrate that
modern CNNs can accurately identify insects in complex scenes with multiple species
in natural backgrounds, enabling the development of new non-destructive methods for
biodiversity and pest monitoring in the field [45].

Another study [46] focused on classifying morphologically similar mosquito species
using a custom dataset of approximately 3,600 images across eight species. The pho-
tos exhibited realistic variations in pose and deformation, including missing body parts
and simulated field-collected samples. To address data scarcity, the authors investi-
gated the effectiveness of transfer learning, fine-tuning three pre-trained deep convo-
lutional neural networks (DCNN) architectures (VGG-16, ResNet-50, and SqueezeNet)
alongside data augmentation techniques. The approach proved highly effective, achiev-
ing a classification accuracy of up to 97.19% with the VGG-16 model. The combination
of fine-tuning and augmentation was critical to the results. A distinguishing aspect of the
study was its use of visualization techniques to analyze model behavior, demonstrating
that the DCNN learned to utilize discriminative morphological features similar to those
employed by human experts—such as patterns on the thorax and abdomen. Addition-
ally, the study considered field applicability by reporting inference latency and energy
consumption of the models on a resource-constrained embedded platform (Nvidia Jet-
son TX2).

In summary, the literature indicates that computer vision techniques (ranging from
classical image processing algorithms to deep learning with CNNs) are revolutionizing
entomology, enabling automated insect identification with high accuracy and speed—
whether to assist in taxonomic recognition of disease vectors or to monitor pollinators
and pests in ecology and agriculture projects.

2.2.3 Automated Classification of Aedes aegypti Using CNNs

Recent research has validated the use of Convolutional Neural Networks (CNNs)
for the automated classification of mosquitoes, with several studies demonstrating high
accuracy in identifying the Aedes genus. In a comparative analysis, [47] evaluated
the LeNet, AlexNet, and GoogLeNet architectures to classify Aedes aegypti, Aedes al-
bopictus, and Culex quinquefasciatus, concluding that GoogLeNet—a more complex
network—achieved the best performance with 76.2% accuracy in the testing phase.
The robustness of these models has been tested in challenging scenarios; for instance,
[48] focused on identifying older Aedes specimens with worn morphological charac-
teristics. Using a MobileNet-based model trained with 4,120 images, they achieved
accuracy above 98%, with performance not significantly different from that of human
experts. The detection scope was also expanded to wild vectors by [49], who applied
AlexNet to identify species from the Aedes genus (Ae. serratus and Ae. scapularis)
among other yellow fever vectors, achieving an average accuracy of 94%.

25

In addition to validating algorithmic accuracy, this work also focuses on the feasi-
bility of deploying these AI models on low-cost hardware, enabling direct field applica-
tions. [6] developed an intelligent and autonomous trap based on the Internet of Things
(IoT), which utilizes a SqueezeNet CNN embedded on a Raspberry Pi to identify and
physically capture Aedes aegypti in real-time, achieving a 90% recognition rate in a
simulated living room environment.

Similarly, aiming for portability and richer data generation, [5] proposed VectorBrain,
a lightweight architecture based on EfficientNet-B1, designed to run on low-cost smart-
phones. This system not only identifies the Aedes genus but also performs multi-task
analysis to determine the mosquito’s sex and abdominal status, providing richer data
for epidemiological surveillance.

Together, these studies illustrate the field’s progression—from validating classifica-
tion models to creating practical and integrated tools that aim to decentralize vector
surveillance and accelerate the response to mosquito-borne diseases.

2.2.4 Use of AI in Low-Cost Devices

The success of AI applications in the field often depends on the ability to run them
on low-cost, resource-constrained computational devices— such as embedded boards
like Raspberry Pi, Arduino, or Nvidia Jetson, which are affordable and portable. How-
ever, running deep learning models on these devices presents a significant technical
challenge due to their much lower processing power and memory compared to servers
or high-performance PCs. For this reason, the scientific community and industry have
invested in optimization techniques to enable on-device AI inference (edge AI).

One widely used strategy is model compression. This includes methods such as
pruning (removing less relevant weights or synapses in the neural network), quantiza-
tion (reducing the numerical precision of parameters, e.g., from 32-bit to 8-bit or 16-bit),
and knowledge distillation (training a smaller model to mimic the outputs of a larger
one). These techniques can drastically reduce a model’s size and computational re-
quirements while maintaining comparable accuracy within certain bounds [50].

A recent study [50] evaluated the impact of pruning and conversion to Tensor-
Flow Lite (now LiteRT, which applies quantization) on CNNs for Raspberry Pi. Results
showed that it is possible to significantly prune models (introducing sparsity) without a
significant loss in performance for simple tasks. The combination of pruning with quan-
tization resulted in notable improvements in inference time on the Raspberry Pi, with
reductions in image processing latency proportional to the degree of optimization [50].
In one case, inference time for a digit classification model (MNIST dataset) was several
times faster after these optimizations, with minimal accuracy drop — highlighting the
feasibility of running efficient CNNs on resource-constrained devices [50]. These gains
are crucial for enabling real-time processing on devices like the Raspberry Pi, which

26

has limited CPU and memory resources.
Another essential technique is the use of libraries and tools optimized for specific

hardware. For devices with integrated GPUs or accelerators—such as the Nvidia Jet-
son family (Jetson Nano, TX2, Xavier, Orin) or Intel Movidius Neural Compute Stick and
Google Coral (Edge TPU)—these components can be leveraged to accelerate neural
network inference. Nvidia offers TensorRT, for example—an optimization platform that
performs layer fusion, quantization, and other improvements, generating highly effi-
cient executables for Jetson GPUs. Studies show that when converting heavy models
(e.g., YOLO, EfficientDet, etc.) to TensorRT in FP16 or INT8, the Jetson Nano (one of
the most basic models with roughly 128 CUDA cores) can improve from a few FPS to
dozens of FPS in object detection, reaching near real-time levels (30 FPS) depending
on model and resolution [51]. For instance, YOLOv4 quantized has been reported to
run at 24 FPS on the Jetson Nano, enabling real-time object detection on this approx-
imately $100 device [51].

More recent devices like Jetson Orin Nano, with a more powerful GPU and support
for half-precision calculations, achieve impressive results: [52] introduced the efficient
CNN “TakuNet” and reported that, in embedded inference tests, this network reached
over 650 frames per second on a Jetson Orin Nano (15 W) [52], for a lightweight model
and specific task, but demonstrating that with appropriate architectures and hardware
accelerators, hundreds of FPS are possible on compact devices. The same model also
ran on a Raspberry Pi (without GPU), confirming its efficiency, although at much lower
frame rates (the paper highlights Jetson due to its superior performance) [52].

On extremely constrained platforms such as microcontrollers (Arduino, ESP32) with
only a few kilobytes of RAM, the concept of TinyML has emerged, where ultra-compact
AI models are designed to run on these devices. Techniques such as aggressive quanti-
zation (e.g., 8-bit or even weight binarization) and simplified models (few-layer networks
or optimized classical ML algorithms) enable functionalities like voice keyword recog-
nition, anomaly detection in industrial sensors, and even basic image classification on
devices that cost only a few dollars and run on batteries [53].

Regarding real-time execution, the challenge lies in balancing model complexity,
input resolution, and processing capacity. In many cases of video object detection on
the Raspberry Pi, the camera resolution is reduced (e.g., from 1080p to 320p), or the
frame rate is lowered to allow the CPU to keep up [14]. Another approach is to use
pre-trained compact models, such as MobileNet and SqueezeNet, or algorithms like
YOLO-Nano, YOLOv5n, and EfficientDet-D0, which are designed to have just a few
million parameters.

Related work has already highlighted bottlenecks and solutions—for example, [43]
found that running full YOLOv7 on Raspberry Pi limited both accuracy and speed [43],
suggesting potential gains by employing simpler versions or compression techniques.

27

Thus, the field of embedded AI now offers a wide range of methods to enable AI on low-
cost devices. The success of applications like the one proposed in this project depends
on properly combining these techniques to meet performance requirements (accuracy
and speed) within available hardware and energy constraints. In this project, aimed
at real-time Aedes aegypti detection, these optimization strategies will be essential.
We expect to adopt a lightweight CNN (or a quantized version) and possibly utilize
optimized frameworks (such as LiteRT) to achieve fast inference on the Raspberry Pi.

2.2.5 Critical Analysis of Reviewed Works

To provide a structured overview of the state-of-the-art, Table 1 summarizes the key
characteristics of the studies reviewed, detailing their objectives, architectures, target
platforms, and main results. This comparison serves as a basis for the subsequent
critical analysis.

Table 1: Comparison of Computer Vision Studies for Insect Identification

Reference Study Objective Model &
Architecture

Target Plat-
form

Main Results

de Araújo et
al. (2024)

Identification of wild
mosquito species,
vectors of yellow fever
(Haemogogus, Sa-
bethes, and Aedes).

AlexNet MATLAB (field
hardware not
specified)

Average accuracy of
94% in identifying the 4
species, using photos
of all body parts.

Li et al. (2024)
[5]

Multitask identifica-
tion (species, sex,
abdomen) of wild
mosquitoes for malaria
surveillance.

VectorBrain
(based on
EfficientNet-B1
and YOLOv5)

Low-cost
smartphones

Accuracy of 94.4%
(species), 97% (sex),
and 83.2% (abdomen).

Dasari et al.
(2024) [4]

Evaluation of the us-
ability of the Vector-
Cam system by health
agents to decentralize
vector surveillance.

VectorCam sys-
tem (hardware
and AI-based
app)

VectorCam
portable de-
vice with
smartphone

Usability Score (SUS)
of 70.25 (acceptable);
throughput of ap-
proximately 56s per
mosquito.

Oliveira et al.
(2024)

Real-time detection of
Aedes aegypti in a
smart IoT trap.

YOLOv7 Raspberry Pi Accuracy of 56.8% in
real-time execution.

Bzigo (2024) Commercial device for
indoor mosquito detec-
tion and laser pointing.

Computer Vision
(Proprietary)

Custom
Embedded
Device

Detects mosquito loca-
tion for user elimina-
tion; no species classi-
fication.

28

Liu et al.
(2023)

Real-time identifica-
tion and capture of live
mosquitoes (Aedes
vs. Culex) in a smart
IoT trap.

SqueezeNet IoT trap with
Raspberry Pi

91.57% accuracy in
identifying Ae. aegypti
(test images).

Gonzalez-
Perez et al.
(2022)

Optical sensor for
mosquito genus and
sex classification by
wingbeat analysis.

Machine Learn-
ing (Optical)

Embedded
Optical Sen-
sor

Accuracy of 94.2% (lab
conditions).

Ong et al.
(2021)

Automated classifica-
tion of Aedes aegypti
and Aedes albopictus,
focusing on older
specimens with dam-
aged morphological
features.

MobileNet (via
Google Teach-
able Machine
2.0)

Custom hard-
ware (“Aedes
Detector”)
with Rasp-
berry Pi

Accuracy of 98.06%,
with no statistical dif-
ference compared to
human experts (98%).

Park et al.
(2020)

Classification of mor-
phologically similar
mosquito species
using data augmenta-
tion.

VGG-16,
ResNet-50,
SqueezeNet

Nvidia Jetson
TX2

Accuracy of 97.19%
with VGG-16.

Motta et al.
(2019)

Field classification
of adult mosquitoes
(Aedes aegypti, Aedes
albopictus, and Culex
quinquefasciatus).

Comparison
between LeNet,
AlexNet, and
GoogLeNet.

Not specified
(focus on
computational
model)

GoogLeNet achieved
83.9% accuracy in
validation and 76.2%
in testing.

Source: own elaboration.

When comparing existing approaches, visible in Tab. 1, with the one proposed in
this study—real-time embedded detection of Aedes aegypti via CNN on a Raspberry
Pi—it is possible to identify advances, limitations, and gaps in the literature that sup-
port the originality and relevance of this work. Firstly, few studies have managed to
simultaneously encompass all the desired aspects (real-time detection, specific focus
on Aedes aegypti, execution on low-cost hardware). Many works have achieved high
accuracy in mosquito identification, but they often do so under laboratory conditions or
using powerful PCs without addressing the issue of embedded deployment. [48], for ex-
ample, achieved over 98% accuracy in classifying Aedes aegypti and Aedes albopictus
using a transfer learning model executed locally in JavaScript (p5.js) on a Raspberry
Pi 4. Despite using embedded hardware, the system was designed to work with static
images captured in a controlled chamber. It was not intended for automated detection
from a continuous video stream in the field. The authors themselves noted limitations

29

when transferring the model to a physical environment, such as the need for constant
maintenance and the risk of data drift, as classifier performance may deteriorate when
the captured mosquitoes differ from the original training data—whether due to pose
variation, body damage, or aging. This highlights an essential practical challenge: the
need for continuous revalidation and adaptation of models deployed in real-world set-
tings.

Some initiatives have implemented mosquito detection in embedded systems, but
they face performance limitations that leave room for innovation. For instance, the
smart trap developed by [43] detected Aedes aegypti onboard a Raspberry Pi using
YOLOv7 but reached only around 56.8% accuracy in real-time [43]. This low precision
could be due to various factors. YOLOv7, although state-of-the-art [54], might have
been overly constrained after modifications for Raspberry Pi compatibility. Alternatively,
the training process may have lacked sufficient scene or insect variability, leading to fre-
quent false positives or missed detections. It is also possible that to achieve some FPS,
the model operated at very low resolutions or with simplifications that compromised the
detection of small mosquitoes in wide-frame images [15]—a known issue, as Aedes
mosquitoes occupy only a few pixels in such photos. In contrast, [6] achieved a signif-
icantly higher accuracy of 91.57% using SqueezeNet on a similar IoT platform, though
this performance was evaluated on test images rather than a live continuous stream,
suggesting that the trade-off between real-time processing and accuracy remains a
critical optimization challenge.

Another relevant aspect for comparing reviewed studies is the application context.
Most research focuses on taxonomic classification of mosquitoes under controlled lab
conditions, such as the work by [47], which used CNNs to distinguish Aedes aegypti, A.
albopictus, andCulex quinquefasciatus in captured specimen images (with up to 83.9%
accuracy), or by [46], who achieved 97% accuracy using data augmentation on mor-
phologically varied images. Other studies, such as de Araújo et al. (2024), expanded
this scope to wild vectors of yellow fever, achieving 94% accuracy with AlexNet, but
relied on offline processing in MATLAB rather than an embedded field solution. How-
ever, these approaches do not face the operational challenges of field deployment,
where factors such as variable lighting, partial specimen integrity, and computational
constraints directly impact system robustness.

Solutions like the optical sensor developed by IRTA/Irideon (2022), while innova-
tive in distinguishing genera and sex based on lab-acquired optical signals (with up
to 94.2% accuracy), still lack validation in open environments, where noise and the
presence of non-target insects affect performance [55]. Similarly, the Bzigo device [56]
detects mosquitoes indoors but does not classify species nor integrate with epidemio-
logical surveillance systems. Moreover, many of these devices do not support specific
taxonomic classification or integration with active vector monitoring strategies. Mobile-

30

based solutions like VectorBrain [5] and VectorCam [4] offer high-accuracy multitasking
capabilities (identifying species, sex, and abdomen status) on low-cost smartphones,
as demonstrated by Li et al. (2024) and Dasari et al. (2024). However, these systems
typically require a human operator to capture the image, unlike autonomous smart traps
that function continuously without human intervention.

Thus, there is a gap in the literature regarding systems that combine (1) local and
embedded operation, (2) coupling with field-deployed physical traps, and (3) epidemio-
logical focus, with specific classification of Aedes aegypti to support public health initia-
tives. The present proposal fits precisely in this context, offering a solution that performs
embedded classification of mosquitoes captured in physical traps installed in the field,
with autonomous and local identification of the Aedes aegypti vector using an optimized
CNN running on a Raspberry Pi.

Additionally, the review shows that even the most advanced systems face chal-
lengeswhen deployed in the real world. [48] reported that theirAedesDetector achieved
human-level performance in species identification; however, the authors highlighted is-
sues such as model degradation and the need for continuous maintenance [48]. This
suggests that AI models may need to be periodically retrained or fine-tuned to accom-
modate seasonal changes in mosquitoes (e.g., size and prevalence of similar species).
From this work’s perspective, a field-deployed Aedes detection system should be de-
signed to allow easy model updates—ideally, incorporating incremental learning or at
least a streamlined procedure to upload new weights as data is collected.

It was also noted that many approaches focus on proving a technological concept
but do not evaluate cost, usability, and user acceptance. For example, smart traps
must be robust, battery - or solar-powered, and easy to maintain in the field. A high-
resolution camera running continuously can consume significant amounts of energy
and generate excessive amounts of data. These practical aspects, although beyond
the strictly academic scope, are crucial for the real-world success of such technologies
and were rarely addressed in the reviewed articles.

In summary, the critical analysis of the reviewed works demonstrates that a sub-
stantial body of knowledge already supports the feasibility of identifying Aedes aegypti
using AI, often with high accuracy. The trend points toward increasingly autonomous
and embedded solutions. However, significant gaps remain regarding real-time appli-
cations, especially on low-cost devices for public health surveillance. Existing studies
either achieve high performance in controlled settings or manage embedded implemen-
tation by sacrificing accuracy. To date, there is no research offering a comprehensive
solution that combines high accuracy, real-time operation, low cost, and immediate field
applicability for Aedes aegypti detection. This highlights the originality and relevance of
the present work, which aims to develop a real-time embedded detection and classifica-
tion system specifically targeting Aedes aegypti. By integrating accuracy, affordability,

31

and direct field applicability, this project seeks to fill a critical gap not yet addressed by
the literature.

32

3

3
METHODOLOGY

3.1 PROPOSED ARCHITECTURE OVERVIEW
The proposed system is designed as an autonomous edge-computing solution for

the real-time surveillance of mosquito vectors.

Figure 7: Overview of the proposed classification pipeline

Source: own elaboration.

The architecture is structured into a modular pipeline that processes visual data
directly on the embedded device, minimizing the need for cloud connectivity and re-
ducing latency. The system’s core functionality is divided into two main stages: object
detection and species classification, bridged by a rigorous data quality filtering process.

The architectural workflow begins with the acquisition of high-resolution images
(1920×1080 pixels) using a camera module interfaced with the Raspberry Pi 4. The
system is triggered to capture images at set intervals or upon motion detection events.
Following acquisition, the image is processed by a single-stage object detector (YOLOv8n).
This module is responsible for locating mosquitoes within the complex scene, generat-
ing bounding boxes, and filtering out background elements. It acts as a region proposal

34

network, isolating potential vectors from the environment.
For each detected object, a sub-image (crop) is extracted based on the bounding

box coordinates, focusing the subsequent analysis solely on the biological specimen.
To ensure the reliability of the classification, these extracted crops undergo a quality as-
sessment. Heuristic filters based on Edge Density and Michelson Contrast are applied
to reject images that are too blurry, low-contrast, or contain insufficient morphological
details. This step is crucial to prevent “garbage in, garbage out” scenarios. Finally, the
valid crops are fed into a specialized Convolutional Neural Network (CNN), specifically
a YOLOv8n-cls model. This model, trained using a background normalization protocol
via synthetic noise injection to mitigate environmental bias, classifies the specimen into
one of three target species: Aedes aegypti, Aedes albopictus, or Culex quinquefascia-
tus.

This multi-stage approach allows for the optimization of each component indepen-
dently. The detection model is optimized for recall to ensure no mosquito is missed,
while the classification model is optimized for precision and robustness against envi-
ronmental variations. The entire pipeline is optimized to run on the limited hardware
resources of the Raspberry Pi 4, utilizing quantization techniques to achieve real-time
performance.

3.2 DATASET COLLECTION AND CURATION
The dataset used in this study is a comprehensive collection of mosquito images,

comprisingAedes aegypti, Aedes albopictus, andCulex quinquefasciatus, meticulously
curated to support the development of robust detection and classification models. The
final consolidated dataset comprises a total of 85,296 raw images, representing 753
distinct mosquito specimens of epidemiological interest.

3.2.1 Data Acquisition

The data collection process was systematically executed in two distinct phases,
each characterized by differences in collection sites, equipment versions, and targeted
mosquito species. This approach was crucial for acquiring diverse biological data and
assessing the system’s generalization capabilities across varied environmental and
hardware conditions.

The image acquisition was performed using a custom-built smart trap system pow-
ered by a Raspberry Pi 4 Model B. This single-board computer features a Broadcom
BCM2711 SoC with a quad-core Cortex-A72 (ARM v8) 64-bit CPU clocked at 1.8GHz
and 4GB of LPDDR4-3200 SDRAM. The imaging core consists of a Raspberry Pi Cam-
era Module V3 connected via the 2-lane MIPI CSI port, equipped with a specialized
macro lens. This optical setup is critical for capturing minute morphological details es-
sential for distinguishing between similar mosquito species.

35

To ensure high-quality data, a sequential imaging capture strategy was implemented.
For each specimen, the system captures a sequence of images while varying the lens
focal position. This technique maximizes the probability of obtaining sharp, in-focus
images of different anatomical features. Furthermore, the capture process utilizes a
multi-view approach, capturing images from three fixed angles (Left, Center, Right) to
cover the specimen’s morphology comprehensively. The rotation is controlled by a
NEMA 17 stepper motor (1.8◦/step), which moves the camera platform by a predefined
number of steps (default: 5 steps, corresponding to approximately 9◦) to the left and
right relative to the neutral position, ensuring consistent angular displacement for each
capture session.

The collection campaign was divided into two main stages:

• Stage 1 - UnB (ArboControl) - Federal District [8]: This initial phase, conducted
at the ArboControl Laboratory at the University of Brasília (UnB), utilized the first
version of the smart trap hardware. The primary focus was the collection of Aedes
aegypti specimens, cataloging 480 individuals and generating 43,626 images,
which served as the foundational dataset for this species.

• Stage 2 - Fiocruz (Instituto Aggeu Magalhães) - Recife [9]: This subsequent
phase took place at the Instituto Aggeu Magalhães (Fiocruz) in Recife and em-
ployed the second, updated version of the smart trap hardware. The main ob-
jective was to broaden the dataset to include Culex quinquefasciatus (174 spec-
imens, 21,930 images) and Aedes albopictus (79 specimens, 14,130 images).
Additionally, a control group of 20 Aedes aegypti specimens (totaling 5,610 im-
ages) was collected with the second equipment version at UnB, ensuring conti-
nuity and allowing for cross-hardware performance validation. This strategic ex-
pansion introduced significant biological diversity and hardware-related variations
(e.g., background patterns, lighting conditions), crucial for testing the model’s ro-
bustness against different domains.

3.2.2 Dataset Composition and Bias Control

The heterogeneity arising from the different hardware versions used in the data
collection phases presents a significant challenge: the risk of domain bias, where the
model might learn to classify the background or lighting rather than the mosquito itself.
To address this, the Aedes aegypti dataset was strategically stratified. The “Domain
Control Group” (specimens 481-500), captured with the second equipment version,
shares the same visual environment as the Culex and Albopictus classes. This group
serves as a critical validation set to ensure the model is identifying species-specific
features and not merely the capture device.

The raw dataset distribution is summarized in Table 2.

36

Table 2: Summary of the raw dataset, describing image volume and specimen count
per species

Species Images Specimens
Aedes aegypti 49,236 500
Culex quinquefasciatus 21,930 174
Aedes albopictus 14,130 79
Total 85,296 753

Source: own elaboration.

To prevent data leakage—a common pitfall in machine learning where information
from the training set contaminates the test set—the raw data structure was flattened
while preserving metadata in the filenames. Each image was renamed to include the
species, specimen ID, original folder, and capture angle (e.g., aegypti-mosquito000-
folder0159-left1.jpg, culex-mosquito095-folder0334-right-focus-7.jpg). This
naming convention ensures that all data splitting for training, validation, and testing can
still be rigorously performed at the specimen level by parsing the filename, guaranteeing
that all images of a given individual belong exclusively to a single subset.

3.3 DETECTION MODULE DEVELOPMENT
The detection module is the first critical stage of the pipeline, responsible for locating

mosquitoes within the raw high-resolution images. Given the constraints of the target
embedded hardware (Raspberry Pi 4 Model B), the development of this module focused
on finding the optimal trade-off between detection accuracy (Mean Average Precision
- mAP) and inference speed (latency).

3.3.1 Architecture Selection

To identify the most suitable architecture for this specific application, a compara-
tive study was conducted evaluating three state-of-the-art object detection models op-
timized for edge computing:

• YOLOv8n (Ultralytics): A single-stage detector known for its speed and accu-
racy. The “Nano” (n) version was selected for its lightweight architecture (≈ 3.2M
parameters), which utilizes a C2f backbone and anchor-free detection head, mak-
ing it highly suitable for real-time applications [57].

• SSD MobileNetV2 (TensorFlow): A classic architecture for mobile vision that
combines the Single Shot MultiBox Detector (SSD) with the MobileNetV2 back-
bone. It uses depthwise separable convolutions to reduce computational cost (≈
4.3M parameters) and is natively supported by the TensorFlow Lite ecosystem.

• EfficientDet-Lite0 (TensorFlow): Part of the EfficientDet family, this model uti-

37

lizes a BiFPN (Bidirectional Feature Pyramid Network) for efficient multi-scale
feature fusion and an EfficientNet-B0 backbone. It employs compound scaling to
balance depth, width, and resolution (≈ 3.2M parameters) [19].

3.3.2 Experimental Configuration

To ensure a fair comparison, all models were trained and evaluated under con-
trolled conditions using the same dataset split. The detection dataset consists of 5,336
images, including 4,936 images containing 5,063 annotated mosquito instances and
400 background-only images added to reduce false positives. The data was split into
Training (70%), Validation (20%), and Testing (10%) sets, utilizing a fixed random seed
(42) to ensure reproducibility.

Each architecture utilized its native preprocessing pipeline to simulate a realistic de-
ployment scenario. The specific preprocessing parameters for each model are detailed
in Table 3.

Table 3: Preprocessing configurations for each detection model

Model Input Size Resizing Method Normalization
YOLOv8n 640× 640 Letterbox (Padding) [0, 1]

SSD MobileNetV2 640× 640 Resize + Center Crop [−1, 1]

EfficientDet-Lite0 512× 512 Letterbox (Padding) [−1, 1]

Source: own elaboration.

The experiments were conducted on theRunPod.io platform using high-performance
NVIDIA A40 GPUs for model training. All models were trained for a maximum of 150
epochs with early stopping enabled (patience of 30 epochs). The batch sizes were op-
timized for the available VRAM: 16 for YOLOv8n, 32 for SSD MobileNetV2, and 8 for
EfficientDet-Lite0. Data augmentation techniques, including flips, rotation, and bright-
ness/contrast adjustments, were applied to improve generalization.

For a fair assessment of inference speed relevant to the final deployment context,
latency tests were conducted in a local environment simulating the constraints of non-
accelerated hardware. These benchmarks were executed on an AMD Ryzen 7 5700G
CPU (utilizing a single core for inference) with 12GB of allocated RAM, running within
a WSL2 (Windows Subsystem for Linux) environment. This setup provides a standard-
ized baseline for comparing the computational efficiency of the models before deploy-
ment to the embedded system.

3.4 PREPROCESSING AND BIAS MITIGATION
This section details the rigorous preprocessing pipeline designed to ensure data

quality and eliminate environmental bias, which was identified as a critical source of

38

Shortcut learning in early experiments. The pipeline acts as a filter and a normalizer,
ensuring that only high-quality, unbiased data reaches the classification model.

3.4.1 Quality Extraction and Filtering

After the detection stage, the extracted regions of interest (ROIs) vary significantly
in quality due to factors such as motion blur, focus issues, or low lighting conditions.
To prevent these artifacts from degrading the performance of the classification model,
a heuristic quality filter was implemented as presented in table 4. Three quantitative
metrics are calculated for each crop to assess its viability:

• Edge Density: Measures the amount of high-frequency detail in the image, serv-
ing as a proxy for sharpness.

• Michelson Contrast: Evaluates the dynamic range and global contrast of the
image to ensure sufficient distinction between the specimen and the background
[58].

• Contour Ratio: Assesses the structural integrity of the object within the crop,
filtering out instances where the mosquito is not the dominant subject or is signif-
icantly occluded.

The specific thresholds for these metrics, empirically determined to maximize the
retention of identifiable morphological features while rejecting non-informative samples,
are presented in Table 4.

Table 4: Quality filtering metrics and thresholds

Metric Minimum Threshold
Edge Density 0.000120

Michelson Contrast 0.173

Contour Ratio 0.209

Source: own elaboration.

3.4.2 Validation of Quality Thresholds

To ensure the robustness of the quality filter and avoid arbitrary threshold selection,
a rigorous five-phase validation methodology was applied. This process was designed
to prevent data leakage and ensure that the selected metrics generalized well to un-
seen data. Additionally, the Cohen’s Kappa coefficient [59] was adopted to evaluate
agreement reliability. This metric is widely used to measure inter-rater agreement for
categorical items, providing a more robust assessment than simple percent agreement
by accounting for the possibility of the agreement occurring by chance.

39

1. Data Splitting (Phase 0): The dataset was strictly separated into Training (64%),
Validation (16%), and Holdout (20%) sets at the specimen level before any anal-
ysis to prevent data leakage.

2. Ground Truth Generation (Phase 1): A “Gold Standard” dataset was created by
sampling 540 images. The annotations were performed by the same specialist on
two different days to assess intra-rater reliability, achieving a Cohen’s Kappa [59]
of 0.778 (Substantial Agreement), establishing a reliable baseline.

3. Metric Selection via ROC Analysis (Phase 2): Six quantitative and two boolean
candidate metrics were evaluated using Receiver Operating Characteristic (ROC)
analysis with 5-fold cross-validation on the Gold Standard dataset. The candidate
metrics, organized by category, were:

• Sharpness: Laplacian Variance [60] and Tenengrad Gradient [61];

• Contrast/Content: Michelson Contrast [58] and Shannon Entropy [62];

• Structure: Edge Density (Canny-based) [63] and Contour Area Ratio;

• Background Detection (Boolean): Touches Edges and Solidity [64].

For each metric, the optimal threshold was determined by maximizing Youden’s
J statistic (J = TPR − FPR) on the ROC curve. The three metrics with highest
discriminative power (AUC > 0.65) were selected: Edge Density (AUC = 0.810),
Michelson Contrast (AUC = 0.770), and Contour Ratio (AUC = 0.665). A logical
AND operator was chosen to combine themetrics, prioritizing precision over recall
to minimize false positive approvals.

4. Validation and Testing (Phases 3-5): Themethod was validated on the indepen-
dent Validation set and finally tested on the Holdout set to assess its generalization
capability and consistency across different data partitions.

3.4.3 Background Normalization via Synthetic Noise Injection

Amajor challenge encountered during the development was themodel’s tendency to
learn environmental features—such as the specific texture of the trap (smart trap used
for image collection) and lighting conditions, which varied between different equipment
versions—rather than the mosquito’s morphology. This phenomenon, known as Short-
cut Learning [34], resulted in artificially high accuracy on validation sets that shared the
same environmental cues but poor generalization to new domains.

To mitigate this, a background normalization protocol was developed and applied
to the dataset. Prior to implementation, a comparative study was conducted to select
the most appropriate segmentation architecture. Four state-of-the-art models available

40

in the rembg library were evaluated: u2net, u2netp, silueta, and isnet-general-use.
The selection criteria were:

• Segmentation Quality: Assessed by visual inspection, focusing on the preser-
vation of fine morphological structures (legs, antennae, and wings) critical for
species identification.

• Processing Latency: Measured as the time required to process a sample image,
determining the feasibility of processing the entire dataset (over 20,000 images).

Based on this study (detailed in Section 4.1), the isnet-general-use model was
selected for the dataset generation phase due to its superior quality. The final protocol
applied to the training data involves the following steps:

1. Segmentation: The mosquito foreground is separated from the background us-
ing the U2-Net architecture (specifically the isnet-general-use model) via the
rembg tool. Alpha matting is applied with a foreground threshold of 240 and a
background threshold of 10 to preserve fine details such as legs and antennae.

2. Enhancement: CLAHE [20] (Contrast Limited Adaptive Histogram Equalization)
is applied with a clip limit of 3.0 and a tile grid size of (8, 8) to enhance local
contrast and reveal morphological textures.

3. Noise Injection: The original background is completely removed and replaced
with a synthetic neutral background (RGB 128, 128, 128). To prevent the model
from overfitting to a flat color, Gaussian noise with a standard deviation of 30
(σ = 30) is injected into the background.

This process forces the neural network to focus exclusively on the insect’s features,
as the background becomes statistically irrelevant and consistent across all classes.
Figure 8 illustrates the effect of this normalization process on a sample specimen.

41

Figure 8: Comparison between the original capture and the result of the background
normalization protocol: (a) Original image; (b) Image after normalization protocol

(a) (b)

Source: own elaboration.

3.4.4 Data Splitting Strategy

To ensure the scientific validity of the results, the dataset splitting into Training, Vali-
dation, and Test sets is strictly performed at the specimen level. Since multiple images
are captured for each individual mosquito (burst mode), a random split based on images
would result in “data leakage,” where the model could memorize the specific appear-
ance of an individual rather than learning the general characteristics of the species.

A custom validation script (validate_specimen_split.py) is employed to verify that
no images from the same individual mosquito appear in different splits. This rigorous
approach guarantees that the evaluation metrics reflect the model’s ability to generalize
to unseen specimens.

The script functions by parsing image filenames to extract unique specimen identi-
fiers, composed of the mosquito index and the capture folder. It then aggregates these
identifiers for each dataset partition (Training, Validation, and Test) and executes a set
intersection analysis. If any specimen ID is detected in multiple partitions, the validation
fails, preventing the use of compromised data. This mechanism acts as a final safe-

42

guard against data leakage, ensuring that the model learns species-specific features
rather than memorizing individual insect anomalies.

3.5 CLASSIFICATION MODULE DEVELOPMENT
The classification module operates as the second stage of the pipeline, receiving

the cropped and quality-filtered images from the detection stage. The objective is to
categorize each specimen into one of three classes: Aedes aegypti, Aedes albopictus,
or Culex quinquefasciatus. This section details the evolution of the dataset to mitigate
environmental bias and the architectures evaluated.

3.5.1 Evaluated Architectures

Five Convolutional Neural Network (CNN) architectures were trained and evaluated
on the curated dataset to select the optimal model for the embedded system. The
candidates included a dedicated classification model from the YOLOv8 family and four
standard architectures implemented in PyTorch for comparison.

• YOLOv8n-cls: A nano-scale classification model (2.7M parameters) designed for
high-speed inference [57]. It utilizes the same backbone as the detection model
but with a classification head.

• ResNet-18: A standard residual network (11.2M parameters) serving as a robust
baseline [65].

• MobileNetV2: A lightweight architecture (3.5M parameters) using inverted resid-
uals and linear bottlenecks, optimized for mobile devices [66].

• DenseNet-121: A densely connected network (8.0M parameters) that promotes
feature reuse [29].

• EfficientNet-B1: A model (7.9M parameters) that uses compound scaling to bal-
ance depth, width, and resolution [31].

All models were trained using the same curated dataset with background normal-
ization applied. The PyTorch models utilized a two-stage transfer learning approach
(frozen backbone followed by fine-tuning), while YOLOv8n-cls was trained end-to-end.
The comparative results and detailed performance analysis are presented in Section
4.3.

3.5.2 Investigation of Shortcut Learning and Interpretability

During the initial development phases, the models achieved suspiciously high accu-
racy (99.95%) across all architectures. To validate whether this performance was based
on genuine morphological features or spurious correlations, a rigorous investigation
protocol was established, identifying a critical issue known as “Shortcut Learning” [34].

43

The investigation methodology consisted of three diagnostic steps:

1. Background-Only Inference: Models were tested on images containing only the
background (empty trap walls). The models confidently classified these empty
images into specific species classes based solely on the trap texture (e.g., “Trap
V1” vs. “Trap V2”), confirming strong environmental bias.

2. Feature Analysis: A Random Forest classifier trained on extracted image fea-
tures achieved 100% accuracy, indicating that simple statistical properties (such
as ISO noise and lighting histograms) were sufficient to distinguish the classes,
rendering morphological learning unnecessary.

3. Saliency Mapping: Gradient-weighted Class Activation Mapping (Grad-CAM) vi-
sualization revealed that the models’ focus was predominantly on the background
textures and cage wires rather than the mosquito body.

To address this, the background normalization protocol described in Section 3.4.3
was applied. This involved the complete removal of the background using U2-Net seg-
mentation [67] and the injection of a neutral synthetic background with Gaussian noise.
This strategy forced the models to learn exclusively from the mosquito’s morphology.
Although this initially reduced validation accuracy to ≈ 89%, it established a realistic
baseline free from environmental overfitting.

The final curated dataset improved upon this by incorporating a manual cleaning
phase. A custom review tool was used to remove false positives and segmentation
errors. This dataset consists of 22,387 images from 695 unique specimens. Crucially,
data splitting was performed at the specimen level to ensure zero data leakage, mean-
ing no individual mosquito appears in both training and testing sets.

To qualitatively validate the model’s focus and ensure that predictions are based on
relevant morphological features rather than background noise, the Gradient-weighted
Class Activation Mapping (Grad-CAM) technique was employed [68]. Grad-CAM is a
visualization method that uses the gradients of any target concept (such as the ’Aedes
aegypti’ class) flowing into the final convolutional layer to produce a coarse localization
map highlighting the important regions in the image for predicting that concept.

Unlike other visualization techniques, Grad-CAM is model-agnostic and does not
require architectural changes or re-training. It computes the importance weights of
each feature map in the last convolutional layer by global average pooling the gradients.
These weights are then linearly combined with the feature maps, followed by a ReLU
activation to obtain the final heatmap. This heatmap reveals which parts of the input
image most strongly influenced the model’s decision.

Figure 9 visually demonstrates the effectiveness of the background normalization
strategy in mitigating shortcut learning. Initially, Grad-CAM visualizations revealed that

44

models focused predominantly on background patterns, rather than morphological fea-
tures of the mosquito. Following the application of background removal and synthetic
noise injection, the heatmaps demonstrate strong activation on specific morphological
structures such as the thorax and wing patterns. This confirms that the background nor-
malization strategy successfully eliminated environmental bias and forced the model to
learn genuine species-specific traits.

Figure 9: GradCAM visualization demonstrating the effect of background
normalization

Source: own elaboration.

45

4

4
RESULTS AND DISCUSSION

4.1 PREPROCESSING AND DATASET GENERATION ANALYSIS

4.1.1 Quality Filter Validation Results

The ROC analysis performed on the Gold Standard dataset (n=480 samples) re-
vealed significant differences in discriminative power among the candidate metrics.
Figure 10 presents the ROC curves and correlation matrix for the selected metrics.

Figure 10: Quality metrics evaluation: (a) ROC curves showing discriminative power;
(b) Correlation matrix demonstrating metric independence

Source: own elaboration.

The analysis of the ROC curves in Figure 10(a) demonstrates the individual effec-
tiveness of eachmetric. EdgeDensity proved to be themost robust indicator (AUC= 0.811),
suggesting that the presence of high-frequency details is the most reliable proxy for im-
age usability. Michelson Contrast also exhibited strong performance (AUC = 0.771), ef-
fectively filtering out low-contrast images that could hinder feature extraction. Although
Contour Ratio showed a more modest performance (AUC = 0.664), it serves a specific
role in rejecting structural outliers. Furthermore, the correlation matrix in Figure 10(b)
confirms that these metrics capture complementary information: Edge Density shows

47

low correlation with both Michelson Contrast (r = 0.291) and Contour Ratio (r = 0.066),
supporting the hypothesis that each feature contributes unique discriminative informa-
tion rather than redundant signals.

Table 5 summarizes the performance of all candidate metrics evaluated during the
selection process.

Table 5: Performance comparison of candidate quality metrics (5-fold CV)

Metric AUC F1 Precision Recall Selected
Edge Density 0.810 0.757 0.768 0.747 ✓
Michelson Contrast 0.770 0.795 0.680 0.962 ✓
Contour Ratio 0.665 0.772 0.646 0.962 ✓
Tenengrad 0.642 0.727 0.596 0.931
Entropy 0.490 0.704 0.551 0.977
Solidity 0.446 0.703 0.544 0.992

Source: own elaboration.

According to the results in Tab. 5, Edge Density, Michelson Contrast, and Contour
Ratio were selected, as they presented the highest values of AUC and F1-score.

The final filter, applying the three metrics with a logical AND operator, achieved a
Cohen’s Kappa of 0.588 (Moderate Agreement) with human judgment, with precision
of 86.5% and recall of 63.4%. Notably, it reduced false positives by 93.1% compared
to the standard literature baseline for blur detection (Laplacian variance) [69]. The filter
demonstrated exceptional consistency across independent datasets, maintaining an
approval rate of 53.0% ± 0.57 percentage points as shown in Tab. 6.

Table 6: Quality filter consistency across dataset partitions

Dataset Total Images Approved Approval Rate
Training 35,929 19,043 53.0%
Validation 8,983 4,806 53.5%
Holdout 11,228 5,951 53.0%
Total 56,140 ∼29,800 53.1%

Source: own elaboration.

4.1.2 Background Removal Model Selection

The evaluation of background removal models was critical to ensure the quality of
the training data. Table 7 presents the latency results for the four evaluated architec-
tures.

48

Table 7: Latency comparison of background removal models (Median values)

Model Median Latency (ms) Relative Speed
u2netp 251.9 1.0x (Baseline)
u2net 384.0 1.52x
silueta 481.9 1.91x
isnet-general-use 981.1 3.89x

Source: own elaboration.

As shown in Tab. 7, the u2netp model was the fastest, processing images in ap-
proximately 252 ms. However, visual inspection revealed significant limitations in its
ability to segment fine details. Both u2netp and silueta frequently failed to preserve
the mosquito’s legs and antennae, treating them as background noise. This loss of
morphological information would be detrimental to the classifier, which relies on these
features for species differentiation.

The isnet-general-use model, despite being nearly four times slower than the
fastest alternative (approx. 981 ms per image), demonstrated superior segmentation
quality. It consistently preserved delicate structures such as the legs and the scales on
the thorax. Given that background removal is an offline preprocessing step performed
during dataset generation, the higher latency was deemed acceptable to ensure the
integrity of the biological data. Consequently, isnet-general-use was selected as the
standard model for the training data normalization protocol. However, for the embed-
ded inference pipeline where latency is critical, the u2netp model was chosen as the
operational compromise, as detailed in Section 4.4.

4.2 OBJECT DETECTOR EVALUATION

4.2.1 Comparative Analysis

To identify themost suitable architecture for the embedded constraints of this project,
three state-of-the-art lightweight models were evaluated: YOLOv8n, SSDMobileNetV2,
and EfficientDet-Lite0. The comparative performance of these architectures, assess-
ing both detection accuracy (mAP@0.5) and computational efficiency (latency), is pre-
sented in Tab. 8.

49

Table 8: Comparison of detection models (mAP and Inference Time)

Model mAP@0.5 Latency (ms)
YOLOv8n 99.44% 28.4
SSD MobileNetV2 92.10% 45.2
EfficientDet-Lite0 94.50% 52.1

Source: own elaboration.

As shown in Tab. 8, the YOLOv8n model achieved a Mean Average Precision
(mAP@0.5) of 99.44%, demonstrating superior performance compared to SSD Mo-
bileNetV2 and EfficientDet-Lite0. Figure 11 provides a visual comparison of the trade-off
between accuracy and latency for the evaluated architectures, highlighting the domi-
nance of YOLOv8n in both metrics. Consequently, YOLOv8n was selected as the pri-
mary detector due to its optimal balance between accuracy and inference speed. This
near-perfect detection rate ensures that virtually all mosquitoes present in the frame
are correctly cropped and passed to the quality filter. The high mAP suggests that the
morphological features of mosquitoes (legs, wings, body) are distinct enough against
the background for modern object detectors, even in the “Nano” scale architectures.

Figure 11: Comparison of detection models: mAP@0.5 vs. Inference Latency: (a)
Detection Models Performance Comparison; (b) Precision-Recall Curve (YOLOv8n)

Source: own elaboration.

The comparative analysis presented in Fig. 11(a) corroborates the superiority of
the YOLOv8n architecture across all evaluated metrics. It achieved the highest scores
for mAP@0.5, Precision, Recall, and F1-Score, outperforming both SSD MobileNetV2
and EfficientDet Lite0. Notably, the gap in mAP@0.5:0.95 (orange bar) highlights
YOLOv8n’s better localization accuracy. Figure 11(b) further details the performance
of the selected model, displaying the Precision-Recall curve for YOLOv8n. The curve

50

exhibits a near-ideal profile, maintaining high precision even as recall increases. The
optimal operating point, marked with a red star, was identified at a confidence threshold
of 0.25, where the model achieves a balance that maximizes detection of true positives
while minimizing false alarms.

While accuracy is crucial, the inference latency is the determining factor for de-
ployment on the Raspberry Pi 4. The YOLOv8n architecture, with its optimized C2f
backbone, provided the necessary throughput to process images in real-time, enabling
the system to function as an effective smart trap.

4.3 SPECIES CLASSIFIER EVALUATION
This section presents a detailed analysis of the classification module’s performance,

including the comparative evaluation of architectures, the investigation of dataset bias,
and the validation of the final model’s generalization capabilities.

4.3.1 Bias Analysis and Shortcut Learning

A significant finding of this research was the identification of “shortcut learning” in
early iterations of the dataset containing original backgrounds. Initial models achieved
suspiciously high accuracy (99.95%) even on validation sets. Further investigation using
Gradient-weighted Class Activation Mapping (GradCAM) and ablation studies revealed
that the models were relying on background features—such as the specific texture of
the trap walls used for different species—rather than morphological characteristics.

To quantify this phenomenon, an experiment was conducted using a background-
removed dataset where the background was algorithmically removed and replaced with
synthetic noise. This intervention caused the validation accuracy to drop from 99.95%
to 89.74%, exposing the extent to which the previous models relied on environmental
cues.

The subsequent refinement of the dataset, which included manual cleaning of seg-
mentation artifacts (curated background-removed dataset), restored the accuracy to a
realistic and robust level. Table 9 summarizes this evolution, demonstrating that the fi-
nal performance is based on genuine morphological learning rather than environmental
overfitting.

Table 9: Impact of dataset curation strategies on model performance

Dataset Version Strategy Val Accuracy Validity
Original Original Images 99.95% Invalid (Shortcut Learning)
Bg-Removed Background Removal 89.74% Valid (Baseline)
Curated Bg. Removal + Manual

Cleaning
98.21% Valid (Production)

Source: own elaboration.

51

Before proceeding with the selection of the optimal classification architecture, it was
imperative to address these identified biases and ensure the model’s robustness to
environmental variations. The following section details the architectural comparison
based on the curated and debiased dataset.

4.3.2 Architecture Comparison and Model Selection

Five CNN architectures were evaluated on the curated dataset with background
normalization. Table 10 presents the comparative results.

Table 10: Performance comparison of classification architectures on the Test Set

Model Test Acc Val Acc Params Time (min) F1 Macro
YOLOv8n-cls 98.18% 98.21% 2.7M 21.0 98.20%
ResNet-18 96.42% 97.67% 11.2M 25.6 96.60%
MobileNetV2 96.28% 97.38% 3.5M 30.7 96.48%
DenseNet-121 96.26% 97.97% 8.0M 47.1 96.47%
EfficientNet-B1 96.26% 97.94% 7.9M 57.7 96.47%

Source: own elaboration.

As exposed in Table 10, the YOLOv8n-cls model demonstrated superior perfor-
mance across all metrics, achieving the highest test accuracy (98.18%) while being
the lightest (2.7M parameters) and fastest to train (21 minutes). The PyTorch mod-
els converged to a lower accuracy plateau (≈ 96.3%), suggesting that the end-to-end
optimization of YOLOv8n is more effective for this specific task. Based on these re-
sults, YOLOv8n-cls was selected as the production model. The selected model’s con-
vergence behavior during training and its discrimination capability (ROC curves) are
illustrated in Figure 12.

52

Figure 12: Classification performance analysis: (a) Training and validation
loss/accuracy curves; (b) Receiver Operating Characteristic (ROC) curves for each

species

Source: own elaboration.

Figure 12(a) illustrates the training dynamics, showing a consistent decrease in
training loss and a rapid increase in validation accuracy, which stabilizes at approx-
imately 98% accuracy. Although the validation loss exhibits minor fluctuations, it re-
mains low, suggesting effective generalization. The ROC curves presented in Figure
12(b) highlight the model’s discriminative power across all classes, with Area Under
the Curve (AUC) values surpassing 0.99. Specifically, Culex quinquefasciatus is clas-
sified with near-perfect precision (AUC = 0.9995), while the distinction between Aedes
aegypti (AUC = 0.9945) and Aedes albopictus (AUC = 0.9951) is also highly reliable,
yielding a macro-average AUC of 0.9964.

4.3.3 Error Analysis

The confusion matrix for the selected YOLOv8n-cls model, ilustrated in Fig. 13,
reveals that the majority of errors (73%) occur between Aedes aegypti and Aedes al-
bopictus. This high degree of confusion between these two species, both belonging to
the Aedes genus and sharing significant morphological similarities, serves as a strong
indicator that the model is indeed learning and relying on subtle morphological char-
acteristics for classification, rather than spurious environmental cues. In contrast, the
distinction between the Aedes genus and Culex quinquefasciatus is highly accurate,
with a recall of 99.25% for Culex.

53

Figure 13: Confusion Matrix for YOLOv8n-cls on Test Set

Source: own elaboration.

Table 11 details the performancemetrics for each species. The results indicate great
performance in identifying Culex quinquefasciatus (F1=0.9914), likely due to its distinct
morphological features compared to the Aedes genus. The slight confusion between
Aedes aegypti and Aedes albopictus is expected given their biological similarity, yet the
model still maintains an F1-score above 97% for both, which is sufficient for effective
field surveillance.

Table 11: Detailed performance metrics by class (Test Set)

Species Precision Recall F1-Score Support
Aedes aegypti 0.9848 0.9764 0.9806 1,528
Aedes albopictus 0.9681 0.9799 0.9740 897
Culex quinquefasciatus 0.9903 0.9925 0.9914 930
Macro Avg 0.9811 0.9829 0.9820 3,355

Source: own elaboration.

4.3.4 Cross-Environment Validation

Although the second trap environment was included in the training set for Culex
and Albopictus, the Aedes aegypti class presented a unique challenge: 96% of its

54

training samples (480/500 specimens) originated from the previous version of the smart
trap. This imbalance posed a risk of the model learning to associate Aedes aegypti
specifically with the first environment’s background.

To validate the model’s ability to generalize beyond this correlation, an experiment
was conducted using images captured in the second version of the trap, with a specific
focus on Aedes aegypti performance in this “new” setting. The model achieved an ac-
curacy of 93.80% (2,057/2,193 correct predictions). This result confirms that the model
did not overfit to the environmental features for Aedes aegypti, successfully identify-
ing the species even when presented against the second environment’s background,
thereby validating the effectiveness of the background normalization strategy.

4.3.5 Interpretability Analysis

Figure 14 presents the GradCAM visualization for the YOLOv8n-cls model. The
heatmaps demonstrate that the model activates specifically on morphological features
such as the thorax and legs, confirming that the background normalization strategy
successfully eliminated environmental bias.

55

Figure 14: GradCAM visualization showing model activation on morphological
features

Source: own elaboration.

4.4 EMBEDDED DEVICE BENCHMARK
To validate the feasibility of the proposed system as an edge computing solution,

benchmarks were conducted on a Raspberry Pi 4 Model B (4GB RAM). The evaluation
focused on inference latency, throughput (FPS), and model accuracy using the NCNN
framework, which is optimized for ARM architectures.

4.4.1 Object Detection Inference

56

For the detection stage, the YOLOv8nmodel was also optimized using NCNN. Table
12 compares the performance of the standard Ultralytics runtime against the optimized
NCNN implementation.

Table 12: Detection performance on Raspberry Pi 4: Ultralytics vs. NCNN

Framework Latency (ms) FPS mAP@0.5
Ultralytics (PyTorch) 794.0 1.26 99.41%
NCNN (Optimized) 396.5 2.52 99.35%

Source: own elaboration.

The NCNN optimization reduced inference latency by 50% (2.0x speedup) while
maintaining virtually identical mean Average Precision (mAP). Although 2.5 FPS is not
sufficient for high-speed video analysis, it is adequate for a smart trap scenario where
mosquito entry events are discrete.

4.4.2 Background Normalization Bottleneck

A critical component of the pipeline is the background normalization to prevent short-
cut learning. While the isnet-general-usemodel was selected for generating the train-
ing dataset due to its superior segmentation quality (as detailed in Section 4.1), it proved
too computationally expensive for the embedded inference pipeline. Therefore, for the
runtime environment on the Raspberry Pi 4, the u2netp (quantized U2-Net) model was
selected as themost efficient viable option, trading off a slight reduction in segmentation
detail for significantly lower latency.

Despite being the fastest model tested, u2netp remains the computational bottle-
neck of the system on the Raspberry Pi 4, with a median latency of 2,835 ms per
image. This step consumes approximately 86% of the total processing time.

4.4.3 Classification Inference

The classification models were converted to NCNN format to leverage low-level
optimizations for the ARM Cortex-A72 CPU. Table 13 presents the performance of the
evaluated architectures.

Table 13: Classification performance on Raspberry Pi 4 (NCNN framework)

Model Latency (ms) FPS Accuracy Speedup vs PyTorch
YOLOv8n-cls 28.7 34.8 94.09% 2.56x
MobileNetV2 62.0 16.1 93.21% 4.16x
ResNet-18 131.0 7.6 95.32% 2.35x

Source: own elaboration.

57

Results in Table 13 indicates that the YOLOv8n-cls model offered the best balance,
achieving real-time performance (> 30 FPS) for the classification stage alone, with
a minimal accuracy trade-off compared to ResNet-18. The transition from standard
PyTorch to NCNN resulted in significant speedups, making complex models viable on
limited hardware.

4.4.4 Full Pipeline Evaluation

The complete pipeline—comprising image loading, detection, cropping, quality fil-
tering, background normalization, and classification—was benchmarked end-to-end.
The results are consolidated in Tab. 14.

Table 14: Full pipeline latency and performance breakdown on Raspberry Pi 4

Pipeline Stage Latency (ms) Contrib. (%) Performance
Detection (YOLOv8n) 396.5 12.0% 99.35% (mAP@0.5)
Background Norm. (u2netp) 2,835.0 86.0% -
Classification (YOLOv8n-cls) 28.7 0.9% 94.1% (Accuracy)
Other (I/O, Pre/Post-proc) 35.5 1.1% -
Total End-to-End 3,295.7 100% 92.1% (Accuracy)

Source: own elaboration.

The system achieves a throughput of approximately 0.30 FPS (or ≈ 18 images per
minute). While this latency prevents real-time video streaming analysis, it is sufficient
for the intended application of an IoT smart trap, where the capture rate of mosquitoes
is typically much lower than the processing capacity. The system maintains a high
end-to-end accuracy of 92.1% on the embedded device.

58

5

5
CONCLUSION

This work presented the development and validation of an intelligent computer vi-
sion system for the automatic detection and classification of Aedes aegypti mosquito,
optimized for low-cost embedded devices. The central motivation was to address the
operational limitations of traditional vector surveillance by proposing a scalable, auto-
mated solution capable of operating at the edge.

5.1 SYNTHESIS OF RESULTS
The experimental results demonstrated the robustness of the proposed pipeline.

The detection module, based on the YOLOv8n architecture, achieved a Mean Aver-
age Precision (mAP@0.5) of 99.44%, ensuring that virtually all specimens entering the
trap are correctly identified and cropped. For species classification, the YOLOv8n-cls
model outperformed standard architectures (ResNet-18, MobileNetV2, DenseNet-121,
EfficientNet-B1), achieving a test accuracy of 98.18% and aMacro F1-Score of 98.20%.

A critical finding of this study was the identification and mitigation of “shortcut learn-
ing.” Initial models achieved artificially high accuracy by relying on background features
rather than mosquito morphology. The implementation of the background normaliza-
tion protocol, which utilized the isnet-general-use model for high-fidelity background
removal during dataset generation, ensured that the final model’s performance reflects
genuine morphological learning. This rigorous preprocessing strategy proved essential
for the system’s generalization capability.

Regarding the embedded implementation on theRaspberry Pi 4, the system achieved
an end-to-end accuracy of 92.1%. The optimization using the NCNN framework was
decisive, reducing detection latency by 50% and achieving a classification inference
time of just 28.7 ms. The full pipeline operates with a total latency of approximately 3.3
seconds per image. While this throughput prevents real-time video streaming analysis,
it is perfectly adequate for the operational dynamics of a smart trap, where mosquito
capture events are discrete and sporadic.

5.2 VERIFICATION OF OBJECTIVES
The specific objectives defined at the beginning of this work were successfully achieved,

as detailed below:

60

• Dataset Collection: The objective of creating a representative database was
met with the collection and curation of 85,236 images from 752 unique speci-
mens, covering Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus
under operational trap conditions.

• BackgroundNormalization Preprocessing: The proposed background normal-
ization strategy was successfully validated. By using the isnet-general-use
model for background removal during training, the system eliminated shortcut
learning, ensuring that classification is based on morphological features rather
than environmental context.

• Object Detection: The goal of achieving a mAP@0.5 greater than 90% was sur-
passed. The YOLOv8n detector achieved a mAP@0.5 of 99.44%, demonstrating
exceptional reliability in identifying mosquitoes within the trap.

• Species Classification: The objective of distinguishing Aedes aegypti with an
accuracy greater than 95% was achieved. The YOLOv8n-cls model reached a
test accuracy of 98.18%, outperforming larger architectures like ResNet-18.

• Embedded Optimization: The target of deploying the system on a Raspberry
Pi 4 with NCNN was met. The optimization reduced classification latency to 28.7
ms, a 2.56x speedup compared to the standard PyTorch implementation.

• System Performance: The final objective of achieving an end-to-end accuracy
greater than 90% on the embedded device was successfully accomplished, with
the system recording a 92.1% accuracy in full pipeline benchmarks.

5.3 CONTRIBUTIONS

1. Feasible High-Precision Edge Solution: The research demonstrates that high-
accuracy taxonomic classification is possible on low-cost, accessible hardware
(Raspberry Pi 4) without relying on cloud connectivity. It bridges the gap between
high-precision/high-cost lab systems and low-precision/low-cost field systems.

• Performance: The system distinguishes between morphologically similar
species (specifically Aedes aegypti vs. Aedes albopictus) with 98.18% ac-
curacy using a YOLOv8n-cls model.

• Optimization: By leveraging the NCNN framework, the complete pipeline
(detection + classification) runs with a latency of roughly 3.3 seconds, which
is viable for the discrete nature of mosquito trapping.

61

2. Mitigation of Shortcut Learning: A significant methodological contribution is the
identification and resolution of Shortcut Learning (environmental overfitting).

• Problem: Initial models were found to be identifying mosquitoes based on
background features rather than morphology.

• Solution: The study developed and validated a rigorous background normal-
ization protocol (using isnet-general-use for segmentation) to ensure the
model learns genuine morphological features, significantly improving gener-
alization.

3. Comprehensive Image Dataset: The work contributes a large-scale, specialized
dataset designed for real-world operational conditions.

• Scale and Diversity: The collection contains 85,236 images representing
753 unique mosquito specimens.

• Operational Context: Data was collected in two distinct phases and locations
(UnB and Fiocruz Pernambuco) using the specific trap hardware, ensuring
the images represent the actual conditions the system will face in the field.

4. Automated Detection and Classification Pipeline: The work delivers a fully
validated computer vision pipeline ready for deployment:

• Object Detection: A YOLOv8n model achieved a Mean Average Precision
(mAP@0.5) of 99.44%, ensuring reliable capture of mosquitoes within the
trap.

• End-to-End Reliability: The integrated system achieved an overall accuracy
of 92.1%when running directly on the embedded device, proving its potential
for scalable, decentralized public health monitoring.

5.4 LIMITATIONS
Despite the successful outcomes, this work encountered several limitations that

should be acknowledged:

1. Shortcut Learning (Environmental Overfitting): This was themost critical chal-
lenge identified. Initial models achieved artificially high accuracy (99.95%) by
learning background features (such as specific trap wall textures) rather than the
mosquito’s morphology.

• Impact: This rendered the initial models invalid for real-world use as they
failed to generalize (accuracy dropped to 89.74% when tested on neutral
backgrounds).

62

• Mitigation: It required the development of a complex background normaliza-
tion strategy, involving algorithmic background removal and manual dataset
curation, to force the model to focus on the insect.

2. Computational Bottleneck of Background Normalization: While the back-
ground normalization strategy solved the shortcut learning problem, it introduced
a significant performance bottleneck on the embedded hardware.

• Limitation: The high-quality segmentation model (isnet-general-use) used
for training was too computationally expensive for the Raspberry Pi.

• Trade-off : The system had to switch to a lighter, quantized model (u2netp)
for runtime. Even with this lighter model, background removal consumes
86% of the total processing time (approximately 2.8 seconds per image),
limiting the system’s throughput.

3. Hardware Constraints vs. Model Complexity: Deploying modern Deep Learn-
ing models on a Raspberry Pi 4 required significant optimization effort.

• Limitation: Standard PyTorch models were too slow for practical use (e.g.,
detection took nearly 0.8 seconds).

• Mitigation: The entire pipeline had to be migrated to the NCNN framework
(optimized for ARM CPUs) with quantization. While successful, this added
engineering complexity to achieve the final 3.3-second latency.

4. Morphological Similarity Between Species: Distinguishing between Aedes ae-
gypti andAedes albopictus presented a persistent challenge due to their biological
similarity.

• Impact: The majority of classification errors (73%) occurred between these
two species. While the final model achieved high accuracy, this inter-class
confusion remains the hardest biological hurdle compared to distinguishing
the morphologically distinct Culex.

5. Latency for Real-Time Video: The final system achieves a throughput of ap-
proximately 0.3 FPS (one image every 3.3 seconds).

• Limitation: This latency prevents the system from being used for real-time
video stream analysis. It is restricted to processing discrete capture events
(images taken when a sensor triggers), which is sufficient for a trap but limits
other potential applications.

5.5 FUTURE WORK
63

To advance the development of this technology towards a mass-deployable product
and expand its scientific scope, the following future works are suggested:

• Sex Classification: Incorporate the classification of mosquito sex (male vs. fe-
male). This feature is crucial for sterile insect technique (SIT) programs and for
risk assessment, as only female mosquitoes transmit arboviruses.

• Expansion of Species Scope: Extend the dataset and model capabilities to in-
clude other epidemiologically relevant vectors, such as Anopheles (malaria vec-
tor) and other local Aedes species, increasing the system’s versatility for different
geographic regions.

• Field Validation with Wild Specimens: Conduct long-term pilot studies with
smart traps deployed in real-world urban environments. Testing with wildmosquitoes
is essential to validate the model’s robustness against natural morphological vari-
ations (e.g., size, wing wear) and uncontrolled lighting conditions.

• Optimization of Background Normalization: The current background removal
step represents the main computational bottleneck. Future research should in-
vestigate:

◦ Non-AI Techniques: Exploring traditional computer vision methods (e.g.,
color thresholding, edge detection, or static background subtraction) that are
computationally inexpensive compared to neural networks.

◦ Model Optimization: Applying pruning, quantization, or knowledge distilla-
tion specifically to the segmentation models to reduce latency without com-
promising the preservation of fine details (legs and antennae).

◦ Specialized Training: Training a lightweight segmentation model (e.g., U-
Net MobileNet) specifically on mosquito images, rather than using general-
purpose salient object detection models, to achieve a better trade-off be-
tween speed and quality.

• IoT Integration: Integrate a LoRaWANor cellular communicationmodule to trans-
mit classification results in real-time to a central dashboard, enabling the creation
of dynamic infestation heatmaps.

• Dataset Expansion: Incorporate other relevant vectors (such as Anopheles or
Haemagogus) and non-vector insects to further improve the model’s robustness
and practical utility.

64

REFERENCES

References

[1] World Health Organization. (2024) Disease outbreak news: Dengue — global
situation. Atualizado com dados até 30 de abril de 2024, publicado em
30 de maio de 2024. [Online]. Available: https://www.who.int/emergencies/
disease-outbreak-news/item/2024-DON518

[2] Ministério da Saúde. (2024) Monitoramento das arboviroses - aedes aegypti.
Accessed on June 22, 2025. [Online]. Available: https://www.gov.br/saude/pt-br/
assuntos/saude-de-a-a-z/a/aedes-aegypti/monitoramento-das-arboviroses

[3] ——. (2024) Informe semanal nº 05 — coe arbovi-
roses 2024. Accessed on June 22, 2025. [Online]. Avail-
able: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/arboviroses/
informe-semanal/2024/informe-semanal-no-05-coe

[4] S. Dasari, B. Gopinath, C. J. Gaulke, S. M. Patel, K. K. Merali, A. Sunil Kumar,
and S. Acharya, “A handheld tool for the rapid morphological identification of
mosquito species (vectorcam) for community-based malaria vector surveillance:
Summative usability study,” JMIR Hum Factors, vol. 11, p. e56605, Aug 2024.
[Online]. Available: https://humanfactors.jmir.org/2024/1/e56605

[5] D. Li, S. Hegde, S. A. Kumar, A. Zacharias, P. Mehta, V. Mukthineni, S. Srimath,
S. Patel, M. Suin, R. Chellappa, and S. Acharya, “Towards transforming malaria
vector surveillance using vectorbrain: a novel convolutional neural network for
mosquito species, sex, and abdomen status identifications,” Scientific Reports,
vol. 14, no. 1, p. 23647, Oct 2024.

[6] W.-L. Liu, Y. Wang, Y.-X. Chen, B.-Y. Chen, A. Y.-C. Lin, S.-T. Dai,
C.-H. Chen, and L.-D. Liao, “An iot-based smart mosquito trap system
embedded with real-time mosquito image processing by neural networks for
mosquito surveillance,” Frontiers in Bioengineering and Biotechnology, vol.
Volume 11 - 2023, 2023. [Online]. Available: https://www.frontiersin.org/journals/
bioengineering-and-biotechnology/articles/10.3389/fbioe.2023.1100968

[7] A. Goodwin, S. Padmanabhan, S. Hira, and et al., “Mosquito species identification
using convolutional neural networks with a multitiered ensemble model for novel
species detection,” Scientific Reports, vol. 11, p. 13656, 2021. [Online]. Available:
https://doi.org/10.1038/s41598-021-92891-9

[8] ArboControl Project – University of Brasília. (2024) Arbocontrol: Integrated
platform for vector surveillance and research. Accessed on June 22, 2025.
[Online]. Available: https://arbocontrol.unb.br/

66

[9] Fiocruz Pernambuco — Centro de Pesquisas Aggeu Magalhães. (2025) Centro
de pesquisas aggeu magalhães. Accessed on November 25, 2025. [Online].
Available: https://www.cpqam.fiocruz.br/

[10] A. P. M. Mundim-Pombo, H. J. C. Carvalho, R. Rodrigues Ribeiro, and
et al., “Aedes aegypti: egg morphology and embryonic development,”
Parasites & Vectors, vol. 14, p. 531, 2021. [Online]. Available: https:
//doi.org/10.1186/s13071-021-05024-6

[11] European Centre for Disease Prevention and Control. (2024) Aedes aegypti – fact-
sheet for experts. Accessed on June 22, 2025. [Online]. Available: https://www.
ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-aegypti

[12] J. A. Souza-Neto, J. R. Powell, and M. Bonizzoni, “Aedes aegypti vector compe-
tence studies: A review,” Infection, Genetics and Evolution, vol. 67, pp. 191–209,
Jan 2019, epub 2018 Nov 19.

[13] C. Vinauger and K. Chandrasegaran, “Context-specific variation in life history
traits and behavior of aedes aegypti mosquitoes,” Frontiers in Insect Science, vol.
Volume 4 - 2024, 2024. [Online]. Available: https://www.frontiersin.org/journals/
insect-science/articles/10.3389/finsc.2024.1426715

[14] M. Elgendy, Deep Learning for Vision Systems. Manning Pub-
lications, 2020. [Online]. Available: https://www.manning.com/books/
deep-learning-for-vision-systems

[15] R. Szeliski, Computer Vision: Algorithms and Applications. Springer, 2010.
[Online]. Available: https://szeliski.org/Book/

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2016. [Online]. Available:
https://arxiv.org/pdf/1506.01497

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
SSD: Single Shot MultiBox Detector. Springer International Publishing, 2016, p.
21–37. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-46448-0_2

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. [Online]. Available:
https://arxiv.org/pdf/1506.02640

67

[19] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” arXiv preprint arXiv:1911.09070, 2020. [Online]. Available:
https://arxiv.org/abs/1911.09070

[20] K. Zuiderveld, Contrast limited adaptive histogram equalization. USA: Academic
Press Professional, Inc., 1994, p. 474–485.

[21] R. Manthiram. (2020) Exploring feature extraction with cnns. Ac-
cessed: 2025-07-14. [Online]. Available: https://towardsdatascience.com/
exploring-feature-extraction-with-cnns-345125cefc9a/

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[23] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural networks, vol. 2, no. 5, 1989.

[24] Q. Chen, F. Zhang, Y. Wang et al., “Bearing fault diagnosis based on efficient
cross space multiscale cnn transformer parallelism,” Scientific Reports, vol. 15, p.
12344, 2025. [Online]. Available: https://doi.org/10.1038/s41598-025-95895-x

[25] X. Zhao, L. Wang, Y. Zhang et al., “A review of convolutional neural networks
in computer vision,” Artificial Intelligence Review, vol. 57, no. 99, 2024,
accepted 04 February 2024, Published 23 March 2024. [Online]. Available:
https://doi.org/10.1007/s10462-024-10721-6

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1409.1556

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” 2015. [Online]. Available:
https://arxiv.org/abs/1512.00567

[28] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review
of deep learning: concepts, cnn architectures, challenges, applications,
future directions,” Journal of Big Data, vol. 8, no. 1, p. 53, 2021, epub
2021 Mar 31, PMID: 33816053, PMCID: PMC8010506. [Online]. Available:
https://doi.org/10.1186/s40537-021-00444-8

[29] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” 2018. [Online]. Available: https://arxiv.org/abs/1608.
06993

68

[30] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017. [Online]. Available: https:
//arxiv.org/abs/1704.04861

[31] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” 2020. [Online]. Available: https://arxiv.org/abs/1905.11946

[32] D. M. W. Powers, “Evaluation: From precision, recall and f-measure to roc, in-
formedness, markedness & correlation,” Journal of Machine Learning Technolo-
gies, vol. 2, no. 1, pp. 37–63, 2011.

[33] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A survey on performance metrics for
object-detection algorithms,” in 2020 International Conference on Systems, Sig-
nals and Image Processing (IWSSIP), 2020, pp. 237–242.

[34] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. S. Zemel, W. Brendel, M. Bethge,
and F. A. Wichmann, “Shortcut learning in deep neural networks,” Nature Machine
Intelligence, vol. 2, pp. 665–673, 2020.

[35] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-physical
systems approach. MIT Press, 2017.

[36] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, “Deep learning on
mobile and embedded devices: State-of-the-art, challenges and future directions,”
ACM Computing Surveys, vol. 53, 05 2020.

[37] S. E. Mathe, H. K. Kondaveeti, S. Vappangi, S. D. Vanambathina, and
N. K. Kumaravelu, “A comprehensive review on applications of raspberry
pi,” Computer Science Review, vol. 52, p. 100636, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013724000200

[38] X. Y. Leung, R. M. Islam, M. Adhami, D. Ilic, L. McDonald, S. Palawaththa, B. Diug,
S. U. Munshi, and M. N. Karim, “A systematic review of dengue outbreak predic-
tion models: Current scenario and future directions,” PLoS Neglected Tropical
Diseases, vol. 17, no. 2, p. e0010631, 2023.

[39] M. S. Rahman, M. Amrin, andM. A. Bokkor Shiddik, “Dengue early warning system
and outbreak prediction tool in bangladesh using interpretable tree-basedmachine
learning model,” Health Science Reports, vol. 8, no. 5, p. e70726, 2025.

[40] R. Aleixo, F. Kon, R. Rocha, M. S. Camargo, and R. Y. De Camargo, “Predicting
dengue outbreaks with explainable machine learning,” in 2022 22nd IEEE Interna-

69

tional Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2022, pp.
940–947.

[41] TechCrunch. (2020) Microsoft launches premonition, its hardware
and software platform for detecting biological threats. Accessed on
22 June 2025. [Online]. Available: https://techcrunch.com/2020/09/22/
microsoft-launches-premonition-its-hardware-and-software-platform-for-detecting-biological-threats

[42] Microsoft News. (2020) Building a better mosquito trap: How a
microsoft research project could help track zika’s spread. Accessed
on 22 June 2025. [Online]. Available: https://news.microsoft.com/features/
building-a-better-mosquito-trap-how-a-microsoft-research-project-could-help-track-zikas-spread/

[43] D. Oliveira and S. Mafra, “Implementation of an intelligent trap for effective
monitoring and control of the aedes aegypti mosquito,” Sensors, vol. 24, no. 21,
2024. [Online]. Available: https://www.mdpi.com/1424-8220/24/21/6932

[44] D. Ward and B. Martin, “Trialling a convolution neural network for the identification
of braconidae in new zealand,” Journal of Hymenoptera Research, vol. 95, pp.
95–101, 2023. [Online]. Available: https://doi.org/10.3897/jhr.95.95964

[45] K. Bjerge, H. Karstoft, H. M. Mann, and T. T. Høye, “A deep learning pipeline
for time-lapse camera monitoring of insects and their floral environments,”
Ecological Informatics, vol. 84, p. 102861, 2024. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1574954124004035

[46] J. Park, D.-I. Kim, B. Choi, W. Kang, and H. Kwon, “Classification and morpho-
logical analysis of vector mosquitoes using deep convolutional neural networks,”
Scientific Reports, vol. 10, p. 1012, 01 2020.

[47] D. Motta, A. �. B. Santos, I. Winkler, B. A. S. Machado, D. A. D. I. Pereira,
A. M. Cavalcanti, E. O. L. Fonseca, F. Kirchner, and R. Badaró, “Application
of convolutional neural networks for classification of adult mosquitoes in the
field,” PLOS ONE, vol. 14, no. 1, pp. 1–18, 01 2019. [Online]. Available:
https://doi.org/10.1371/journal.pone.0210829

[48] S. Q. Ong, H. A. Ahmad, G. Nair, P. L. Lim, S. Sulaiman, K. F. San,
N. Mustapha, W. A. Nazni, M. S. Jeffree, Y. W. Woon, N. A. Mohamed,
A. H. Mohamed, and N. Hussin, “Implementation of a deep learning model for
automated classification of *aedes aegypti* (linnaeus) and *aedes albopictus*
(skuse) in real time,” Scientific Reports, vol. 11, p. 9908, 2021. [Online]. Available:
https://doi.org/10.1038/s41598-021-89365-3

70

[49] T. O. de Araújo, V. L. de Miranda, and R. Gurgel-Gonçalves, “Ai-driven
convolutional neural networks for accurate identification of yellow fever vectors,”
Parasites & Vectors, vol. 17, p. 329, 2024. [Online]. Available: https:
//doi.org/10.1186/s13071-024-06406-2

[50] A. Salem, T. Theodoridis, and K. Siriwardana, “Efficient convolutional neural net-
works on raspberry pi: Enhancing performance with pruning and quantization,” 04
2024.

[51] X. Yue, H. Li, M. Shimizu, S. Kawamura, and L. Meng, “Deep learning-based real-
time object detection for empty-dish recycling robot,” pp. 2177–2182, 2022.

[52] D. Rossi, G. Borghi, and R. Vezzani, “Takunet: An energy-efficient cnn for real-
time inference on embedded uav systems in emergency response scenarios,” pp.
339–348, 02 2025.

[53] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier,
M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden, “Tensorflow lite
micro: Embedded machine learning on tinyml systems,” 2021. [Online]. Available:
https://arxiv.org/abs/2010.08678

[54] D. L, P. Megharaj, P. P, N. Kiran, A. R. K P, and G. S Nath, “State-of-the-art object
detection: An overview of yolo variants and their performance,” 09 2023, pp. 1018–
1024.

[55] M. I. González-Pérez, B. Faulhaber, M. Williams et al., “A novel optical sensor
system for the automatic classification of mosquitoes by genus and sex with high
levels of accuracy,” Parasites & Vectors, vol. 15, p. 190, 2022. [Online]. Available:
https://doi.org/10.1186/s13071-022-05324-5

[56] Bzigo, “Bzigo – the first device that detects mosquitoes and points at them,” https:
//bzigo.com/, 2025, accessed: 2025-06-22.

[57] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” 2023, accessed:
2025-11-25. [Online]. Available: https://github.com/ultralytics/ultralytics

[58] A. A. Michelson, Studies in Optics. Chicago, IL: University of Chicago Press,
1927.

[59] J. Cohen, “A coefficient of agreement for nominal scales,” Miscellaneous, vol. 20,
no. 1, pp. 37–46, 1960.

[60] S. Pertuz, D. Puig, and M. A. Garcia, “Analysis of focus measure operators for
shape-from-focus,” Pattern Recognition, vol. 46, no. 5, pp. 1415–1432, 2013.

71

[61] E. Krotkov, “Focusing,” International Journal of Computer Vision, vol. 1, no. 3, pp.
223–237, 1988.

[62] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, no. 3, pp. 379–423, 1948.

[63] J. Canny, “A computational approach to edge detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986.

[64] D. Zhang and G. Lu, “Review of shape representation and description techniques,”
Pattern Recognition, vol. 37, no. 1, pp. 1–19, 2004.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available: http:
//arxiv.org/abs/1512.03385

[66] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection
and segmentation,” CoRR, vol. abs/1801.04381, 2018. [Online]. Available:
http://arxiv.org/abs/1801.04381

[67] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand,
“U2-net: Going deeper with nested u-structure for salient object detection,”
Pattern Recognition, vol. 106, p. 107404, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0031320320302077

[68] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-
cam: Visual explanations from deep networks via gradient-based localization,” in
2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 618–
626.

[69] J. L. Pech Pacheco, G. Cristobal, J. Chamorro-Martinez, and J. Fernandez-
Valdivia, “Diatom autofocusing in brightfield microscopy: A comparative study,”
vol. 3, 02 2000, pp. 314–317 vol.3.

72

Ensino que
te conecta

