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RESUMO

A análise tática no futebol enfrenta um impasse estrutural: enquanto ferramentas tec-
nológicas avançadas apresentam custos elevados, processos manuais continuam pre-
dominantes devido à ausência de soluções automatizadas acessíveis, sobrecarregando
analistas, especialmente em clubes com menor investimento. Este trabalho busca mit-
igar essa lacuna ao propor e validar uma metodologia de baixo custo para a identifi-
cação automática de formações táticas a partir de vídeos. A abordagem emprega visão
computacional para processar imagens provenientes de câmeras táticas ou transmis-
sões televisivas, integrando o detector de objetos YOLOv8 ao algoritmo de rastrea-
mento BoT-SORT, cuja capacidade de compensação da movimentação da câmera é
fundamental para a robustez do sistema. A classificação das equipes é realizada por
meio de segmentação cromática no espaço de cor CIELAB com K-Means, enquanto a
inferência tática é obtida por um modelo estatístico dinâmico que mapeia as linhas de
defesa, meio-campo e ataque. A validação, conduzida por meio da comparação entre
as formações inferidas e as escalações oficiais das partidas, demonstrou a eficácia da
metodologia proposta. Os resultados evidenciam um caminho concreto para democ-
ratizar a análise de desempenho, reduzindo a dependência de sistemas proprietários
e oferecendo maior autonomia às comissões técnicas.

Palavras-chave: Visão Computacional, Detecção de Objetos, Rastreamento de
Objetos, Análise Tática no Futebol, Futebol.
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ABSTRACT

Tactical analysis in soccer faces a structural dilemma: advanced technological tools
entail high operational costs, while manual processes still dominate due to the lack of
accessible automation, placing a significant burden on analysts, particularly in lower-
budget clubs. This work addresses this gap by proposing and validating a low-cost
methodology for the automated identification of tactical formations from video footage.
Themethod employs computer vision to process images from tactical cameras or broad-
cast feeds, combining the YOLOv8 object detector with the BoT-SORT tracking algo-
rithm, selected for its robustness and ability to compensate for camera motion. Team
classification is performed through color-based segmentation in the CIELAB color space
using K-Means, while tactical inference is achieved through a dynamic statistical model
that estimates defensive, midfield, and attacking lines. Validation was conducted by
comparing the automatically inferred formations with official match lineups, demonstrat-
ing the effectiveness of the proposed approach. The results indicate a viable path to-
ward democratizing performance analysis by reducing the dependence on proprietary
systems and streamlining the workflow of coaching staffs.

Keywords: Computer Vision, Object Detection, Object Tracking, Soccer Tactical
Analysis, Soccer.
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1
INTRODUCTION

1.1 CONTEXTUALIZATION
For decades, sports performance analysis was a field dominated by the intuition of

coaches and the qualitative observation of scouts [1]. However, this paradigm experi-
enced a clear turning point, popularized by the bookMoneyball [2]. The book chronicled
how statistical analysis was used to subvert traditional baseball logic, demonstrating
that evidence-based decisions could outperform intuition. This philosophy rapidly in-
spired a data rush across various other sports; however, its application to soccer proved
to be a unique challenge due to the game’s fluid and tactically complex nature [3].

To understand the depth of this transformation beyond mere statistics, the work
presented in [4] provides excellent context. The authors define the current landscape
as the “digitization of sports,” a phenomenon that not only optimizes performance but
also fundamentally transforms club structures. According to them, this shift directly
impacts the technological sector—through the proliferation of sensors and cameras—
and the organizational sector, marked by the entry of new actors such as software
companies and the necessity for new management models.

In this context of sports redefined by technology, Computer Vision stands out as a
high-potential tool. Its ability to analyze the game collectively by tracking player posi-
tioning enables the quantification of tactical analysis, transforming subjective percep-
tions of team organization into objective, measurable metrics. The application of similar
technologies in elite tournaments, such as the FIFA World Cup, as evidenced in [4],
demonstrates the relevance of this topic. However, the same research highlights that
this is still a nascent field, presenting a clear opportunity for investigations such as the
one proposed in this work.

1.2 THE SPECIFIC PROBLEM: THE TECHNOLOGICAL ACCESSI-
BILITY GAP

Despite the growing importance of data analysis, access to technological tools re-
mains limited for a significant portion of soccer professionals. Clubs and analysts op-
erating outside the financial elite face a significant dilemma: investing in high-cost,
cutting-edge software or resorting to manual processes, which are inherently slower,
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laborious, and subjective.
This dilemma manifests concretely in the daily routine of industry professionals. In

an interview conducted for this work with the performance analyst of Capital FC, a team
in the Brazilian Série D, the practical challenges faced on a daily basis were revealed.
The choice of this institution was due to geographic accessibility and professional rec-
ommendation, allowing for requirements gathering within a real competition scenario.

During data collection, performed via audio records with the analyst (as detailed in
Appendix B), it was reported that the department consists of only one professional, cre-
ating operational difficulties given the scarcity of information in Série D and the regional
championship. The analyst highlighted that, although the club uses GPS technology
solely for physiological data, there is no structured data collection process for tactical
performance aimed at future applications, such as Machine Learning.

The current workflow relies on Nacsport software for video organization, but the
analysis itself requires a manual tagging process. According to the interviewee, the
team relies on observing three opponent matches (home, away, and after substitutions)
to detect offensive, defensive, and set-piece patterns. The professional mentioned
other tools in the market, such as the Hudl platform, but cited difficulties in implement-
ing previous technologies due to the low reliability of third-party data available for this
division.

Regarding metrics, the analyst emphasized the importance of specific collective
indicators requested by the coaching staff, such as quantifying the ”times the team en-
tered the final third” and identifying ”through which channel” this progression occurred.
Currently, obtaining this data depends on human observation, consuming time that
could be dedicated to strategy.

To contextualize the scale of this challenge, a survey of the main available software
solutions was conducted. The comparative analysis, considering functionalities, costs,
and the target audience of each tool, is consolidated in Table 1.
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Table 1 – Comparison of commercial software for soccer tactical analysis

Software Primary Function Cost

Nacsport [5] Tactical analysis and video coding (tagging).
Interactive dashboards, presentations, and
live analysis.

Ranging from US$ 165/year (Basic)
to US$ 2,590/year (Elite)

Sportscode [6] Industry standard for high-performance video
coding. Tactical analysis and report genera-
tion.

Not publicly disclosed

Wyscout (Hudl) [7] Scouting and recruitment. Global play-
er/video database for market and opponent
analysis.

Not publicly disclosed

Catapult Vision [8] Video analysis integrated with physical perfor-
mance data (GPS). Connects tactical to phys-
ical aspects.

Not publicly disclosed

StatsBomb IQ [9] Event data analysis platform (non-video). Fo-
cus on data science and advanced statistics.

Not publicly disclosed

Metrica Sports [10] Video analysis with tracking tools and tactical
visualizations. Good cost-benefit ratio.

Ranging from € 60/month to unde-
termined (higher-tier plan)

Source: The author.

Table 1, therefore, not only illustrates but underscores the gap dividing the market.
On one hand, elite solutions such as Hudl and StatsBomb offer immense analytical
power, yet they come with undisclosed costs and contracts inaccessible to most orga-
nizations. On the other hand, entry-level solutions like Nacsport address video organi-
zation but still impose a manual workload on the analyst for tactical data extraction.

To gauge the financial barrier imposed by these solutions, it is important to con-
textualize the costs against the budgetary reality of lower-investment clubs. Using the
Nacsport software (Elite version) as a benchmark, with an annual cost of approximately
US$ 2,590 (as per Table 1), it is observed that the investment for a single license rep-
resents a significant sum for clubs with limited resources.

In contrast, the fixed participation fee paid by the Brazilian Football Confederation
(CBF) to Série D clubs in 2025 was set at a value equivalent to approximately US$
83,295 for the entire first phase of the competition [11]. Considering that this resource
must fund about four months of operations, including logistics, food, and the entire
squad’s payroll, the acquisition of a single software license would consume a dispropor-
tionate fraction of the club’s guaranteed budget. Such financial commitment becomes
prohibitive given basic operational priorities and establishes cost as an impediment to
technological innovation in these institutions.

It is precisely within this gap of accessible tools for automated tactical analysis via
Computer Vision that the need to investigate a new solution arises, which is the central
proposal of this work.
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1.3 THE PROPOSED SOLUTION AND JUSTIFICATION
Identifying an innovation opportunity in the sports market, this project is dedicated

to developing and validating a methodology to automate the analysis of tactical forma-
tions in soccer using Computer Vision. The central proposal consists of engineering a
software artifact capable of processing both tactical camera footage and videos from
television broadcasts (broadcast).

The solution aims to map athlete coordinates and, through statistical modeling, infer
the team’s tactical lines (defense, midfield, and attack) and classify the predominant
formation (e.g., 4-4-2) and its dynamic variations throughout the match.

The justification for this work lies in the democratization of access to technology.
Given that current high-end tools impose prohibitive financial barriers on lower-investment
clubs, the development of a solution based on efficient and accessible algorithms presents
itself as a viable path to optimize the workflow of performance analysts at all levels of
the sport.

1.4 RESEARCH QUESTION AND HYPOTHESIS
Considering the challenge of transforming the analyst’s workflow, allowing for greater

focus on strategic interpretation and reduced effort on manual data collection, this work
is guided by the following central question:

Is it possible, through the integration of object detection and tracking techniques,
to automate the identification of tactical formations in soccer videos with validatable
accuracy and low computational cost?

To answer this question, the hypothesis is formulated that the combination of mod-
ern convolutional neural networks with motion-compensated tracking algorithms and
temporal stabilization heuristics enables the development of a methodology capable of
inferring a team’s tactical structure. It is expected to demonstrate that such an approach
is technically viable for post-match analysis applications, overcoming the cost barriers
of proprietary solutions.

1.5 OBJECTIVES

1.5.1 General
To develop an automated methodology, based on Computer Vision techniques, for

the mapping and identification of tactical formations in soccer videos, aiming to optimize
data extraction and support performance analysts’ decision-making.

1.5.2 Specifics

• (SO1) Investigate the accessibility limitations of commercial performance analysis
tools regarding the budgetary reality of lower-investment clubs;
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• (SO2) Prepare the database for model training by utilizing and processing public
soccer image datasets;

• (SO3) Implement a Computer Vision pipeline capable of performing player detec-
tion, temporal tracking, and tactical zone inference;

• (SO4) Measure the effectiveness of the system’s tactical inference by comparing
the automatically generated results against official match lineups.

1.6 DOCUMENT STRUCTURE
This study is organized into five chapters, structured to guide the reader from the-

oretical background to practical validation. Chapter 1 introduces the research problem
and objectives, followed by Chapter 2, which provides the theoretical foundation for per-
formance analysis concepts and reviews the state of the art in detection and tracking
algorithms. Chapter 3 details the solution engineering, describing the pipeline archi-
tecture and the mathematical model developed for tactical inference. Subsequently,
Chapter 4 presents the experimental protocol and discusses the results obtained dur-
ing the validation of the proposed method. Finally, Chapter 5 synthesizes the study’s
contributions, addresses its limitations, and outlines directions for future work.
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2
LITERATURE REVIEW

2.1 THEORETICAL BACKGROUND

2.1.1 Performance Analysis and Digital Transformation in Soccer
As a field of knowledge within Sports Science, Performance Analysis consists of the

process of systematic observation and recording of events, seeking to identify patterns
and factors that influence performance with the ultimate goal of optimizing decision-
making to enhance sporting success [1]. Although early studies of this genre date back
to the early 20th century, it was the combination of professionalization and technological
advancement, starting in the 1980s, that truly consolidated the field in elite soccer [12].

The professional at the center of this entire operation is the Performance Analyst,
whose role extends far beyond merely filming or compiling statistics. The study in [12],
interviewing ten analysts from Brazilian Série A clubs, reveals the complexity of this pro-
fessional’s routine, which ranges from footage acquisition to clip editing and conducting
individual and collective analyses. This process of providing video feedback, especially
to young athletes, is internationally recognized as a powerful pedagogical tool, yet one
that requires great care to avoid negatively impacting player confidence [13].

Despite the growing importance of the field, the analyst’s routine is marked by con-
crete challenges. Research in [12] points to work overload and inadequate infrastruc-
ture as major obstacles in the Brazilian scenario. This reality forces many to use per-
sonal equipment and rely on manual video tagging processes, a task described as time-
consuming and laborious. Such challenges are consistent with findings in international
literature, which also identify coaches’ lack of time and the difficulty in building a positive
learning environment as barriers to the effectiveness of performance analysis [13].

Historically, analysis tools have evolved from manual notations to the support of
computerized systems that automate information recording [12]. However, a persistent
bottleneck exists: interpreting data to identify complex tactical patterns, such as team
organization and movements, remains a task that relies largely on manual intervention
and the analyst’s trained eye. This dependency on the human factor, combined with the
high cost of cutting-edge technologies, highlights the need for solutions that advance
toward automating tactical analysis itself, making it faster, objective, and accessible.
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The current landscape of sports data analysis fits into a much larger movement,
defined by academia as the “digitization of sports.” As contextualized in [4], this con-
cept describes a profound transformation in which technology not only optimizes perfor-
mance but reconfigures the very foundations of the sport, from its organization to how
it is consumed. One of the turning points that catalyzed this data rush was the Money-
ball philosophy. Popularized by the work [2], its premise was radical: using statistical
analysis to build competitive teams more intelligently, relying on evidence rather than
traditional intuition. Although this thinking sparked a data race in the sporting world, its
application to soccer proved to be a unique challenge. The fluid and tactically interde-
pendent nature of the game makes it difficult to isolate indicators that lead directly to
victory, a point already analyzed in detail in [3].

2.1.2 Fundamental Tactical Concepts in Soccer
Modern soccer tactical analysis investigates a team’s collective organization, fun-

damentally represented by its playing system, also known as tactical formation [1]. This
formation is a numerical representation, such as 4-4-2 or 4-3-3, describing the distri-
bution of players across defensive, midfield, and offensive lines, defining their initial
spatial responsibilities on the pitch. From a computational perspective, the formation
can be understood as the team structure, a positioning pattern that emerges from play-
ers’ spatiotemporal data throughout the match [14]. This structure defines how the
team organizes itself to maintain possession, create scoring opportunities, and impede
opponent advancement.

Figure 1 – Representation of a 4-4-2 tactical system

Source: The author.
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Figure 2 – Representation of a 4-3-3 tactical system

Source: The author.

However, it is important to distinguish between the nominal formation and the dy-
namic formation. The nominal formation is the static playing system, planned by the
coaching staff and announced prior to the match. Nevertheless, due to the game’s
fluid nature, this structure rarely remains fixed. The dynamic formation, conversely,
corresponds to the athletes’ actual average positioning, which can be extracted and
analyzed using high-frequency positional data [15]. The ability to discover and analyze
these dynamic structures, representing the team’s actual tactical behavior, is a primary
objective of modern performance analysis approaches, going beyond the simplicity of
the nominal formation [14].

The variation between the nominal and dynamic formations is directly influenced
by the different phases of play, which are the four distinct moments characterizing a
match: offensive organization (when the team possesses the ball and builds an attack),
defensive transition (the immediate moment following possession loss), defensive or-
ganization (when the team positions itself to defend without the ball), and offensive
transition (the immediate moment following possession recovery) [1]. A team’s spatial
organization changes drastically during each of these phases; for instance, a teammay
defend in a compact 4-4-2 formation but shift into a 4-2-4 during the attacking phase to
maximize offensive presence. Therefore, tactical analysis is not limited to identifying a
single formation but involves understanding how the team structure dynamically adapts
to each phase of the game.

2.1.3 Computer Vision Technologies
Extracting tactical knowledge from raw video is a complex computational challenge

requiring the orchestration of state-of-the-art algorithms. The process can be divided
into two fundamental and sequential stages: first, detecting all players in each video
frame, and second, tracking these players over time to maintain their identity and con-
struct their trajectories. In this new scenario, Machine Learning assumes a central role.
Its ability to process complex information to identify patterns invisible to human analysis
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opens a new horizon of possibilities.

2.1.4 Neural Networks, Deep Learning, and Convolutional Specialization
The core technologies of this work, YOLO and DeepSORT, are applications of an

Artificial Intelligence subfield known as Deep Learning. Deep Learning utilizes Artificial
Neural Network (ANN) architectures with multiple layers to learn data representations
hierarchically and automatically.

A neural network, in its most basic form, is a computational model inspired by the
human brain structure, composed of interconnected nodes, or neurons, organized in
layers (input, hidden, and output). Each neuron receives input signals, processes them,
and passes an output signal to the neurons of the subsequent layer. Mathematically,
the output y of a neuron can be represented as:

y = f(
n∑

i=1

(wi · xi) + b)

Where xi are the inputs, wi are the synaptic weights (parameters the network learns
during training), b is a bias, and f is a non-linear activation function. A network becomes
”deep” when it possesses multiple hidden layers, enabling the learning of increasingly
complex and abstract patterns.

Figure 3 – Conceptual representation of a Neural Network architecture.

Source: The author.

For computer vision tasks, such as detecting players on a soccer pitch, a special-
ized class of deep neural network has proven orders of magnitude more effective: the
Convolutional Neural Network (CNN). As employed in architectures such as YOLO [16],
a CNN is designed to process data with a grid topology, such as an image. Its main
characteristic is the convolution operation.

Unlike a traditional neural network, where each neuron connects to all neurons in
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the previous layer, a CNN utilizes filters (or kernels) that slide over the input image.
Each filter is a small feature detector, specialized in identifying simple patterns such
as edges, colors, or textures. As filters traverse the image, they generate ”feature
maps” indicating where these patterns were found. Subsequent convolutional layers
combine these maps to detect more complex patterns, such as the outline of a person
or the shape of a ball. This process, combined with pooling layers that reduce spatial
dimensionality, allows the CNN to learn a hierarchical representation robust to scale
and translation variations, making it the ideal architecture for object detection tasks.

2.1.5 Object Detection with the YOLO Family
Object detection, the task of locating and classifying object instances in an image, is

the first pillar of the proposed solution. Modern approaches utilize Convolutional Neu-
ral Networks (CNNs), and among them, the YOLO (You Only Look Once) model family
stands out as the state of the art for real-time detection. Originally proposed in the sem-
inal work [16], YOLO revolutionized the field by treating detection as a single regression
problem. Unlike two-stage models (such as the R-CNN family), it analyzes the image
only once to predict bounding boxes and class probabilities, resulting in significantly
superior processing speed.

Over the years, YOLO has evolved into several versions. YOLOv3 solidified the
architecture as a market standard, offering an excellent balance between speed and
accuracy. More recent versions such as YOLOv5 and YOLOv8 (developed by the com-
pany Ultralytics) focused on improving not only performance but also the ease of imple-
mentation and training. For the development of a prototype such as the one proposed
in this undergraduate thesis, the choice of a modern version like YOLOv8 is strategic,
as it offers very high performance, vast documentation, and, crucially, the availability of
pre-trained models, which drastically accelerates the development cycle and ensures
the project’s viability.
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Figure 4 – YOLO Detection Model with Bounding Boxes

Source: Adapted from [16].

The operation of YOLO relies on superimposing an S×S grid over the input image.
If the center of an object falls within a specific grid cell, that cell becomes responsible
for detecting that object. Each grid cell predicts B bounding boxes and a confidence
score for each one. This score reflects the certainty that the box contains an object
and the accuracy with which it delimits it. Additionally, each cell predicts a set of class
probabilities, which, combined with the bounding boxes, allow for the classification of
the detected objects. To evaluate the accuracy of a predicted box, the Intersection over
Union (IoU) metric is used, which calculates the ratio between the area of intersection
of the predicted box with the ground truth box and the total area of their union, formally
expressed as:

IoU =
Area of Intersection

Area of Union

Over the years, YOLO has evolved into several versions. YOLOv3 solidified the
architecture as a market standard, offering an excellent balance between speed and
accuracy. More recent versions such as YOLOv5 and YOLOv8 (developed by the com-
pany Ultralytics) focused on improving not only performance but also the ease of imple-
mentation and training. For the development of a prototype such as the one proposed in
this undergraduate thesis, the choice of a modern version like YOLOv8 [17] is strategic,
as it offers very high performance, vast documentation, and, crucially, the availability of
pre-trained models, which drastically accelerates the development cycle and ensures
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the project’s viability.

2.1.6 Transfer Learning
Training deep Convolutional Neural Networks from scratch demands large volumes

of annotated data and high computational power, resources not always available in
specific applications. To mitigate this problem, the Transfer Learning technique is em-
ployed.

According to [18], transfer learning consists of a system’s ability to recognize and
apply knowledge learned in a source domain (with abundant data) to improve learning
in a target domain (where data may be scarce). In the context of computer vision, this
is possible because the early layers of a CNN learn generic features (such as edges,
textures, and simple shapes) that are common to almost all visual images.

Thus, it is possible to utilize the weights of a network pre-trained on a massive,
generic dataset, such as MS COCO (Microsoft Common Objects in Context), and per-
form only the fine-tuning of the final layers to detect specific objects, such as soc-
cer players. This approach drastically accelerates training convergence and improves
model generalization, preventing overfitting on smaller datasets.

2.1.7 Multi-Object Tracking with DeepSORT
Following player detection in a frame, the challenge arises of ensuring that a player

detected in frame t is recognized as the same individual in frame t+1. This task is known
as Multi-Object Tracking (MOT). One of the most well-known and effective algorithms
for this task is DeepSORT, proposed in the work [19].

The SORT component of the algorithm utilizes a Kalman Filter, a classic recursive
estimation algorithm [20], to predict the future position of each player based on their
current movement. The Kalman Filter is optimized to estimate a system’s state from a
series of noisy measurements, such as the bounding box detections provided by YOLO.
It operates in a two-stage recursive cycle: prediction, where the player’s future state
(position and velocity) is estimated based on the current state, and update, where the
prediction is corrected using the new measurement (the detection in the current frame),
resulting in a more accurate and smoothed trajectory estimate. The system state can
be modeled by the following simplified equations:

xk = Fkxk−1 +wk (State transition equation)

zk = Hkxk + vk (Measurement equation)

Where x represents the player’s state (containing position and velocity coordinates),
F is the transition matrix modeling the physics of motion, and z is the observed mea-
surement (the YOLO bounding box). The terms w and v represent the process and
measurement noise, respectively.
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Based on this motion prediction, the algorithm performs data association, efficiently
connecting YOLO detections in the new framewith the predicted trajectories. Themajor
innovation, the ”Deep” in the name, is the use of a pre-trained deep neural network to
extract a feature vector (embedding) representing each player’s unique appearance.
When a player is occluded and reappears, the system does not rely solely on motion
but compares the new player’s visual signature with those who disappeared, enabling
robust re-identification and the maintenance of the same ID for the player.

Despite its effectiveness, DeepSORT possesses limitations, particularly in scenar-
ios with heavy occlusions, players with highly similar appearances (identical uniforms),
and videos with significant camera movement, where Kalman Filter predictions become
less reliable.

2.1.8 The State of the Art in Tracking: BoT-SORT
To overcome the limitations observed in trackers based purely on linear Kalman Fil-

ters, such as DeepSORT, recent literature has advanced toward architectures more ro-
bust to dynamic scenarios. In this context, BoT-SORT (Bolstered Tracking-by-Detection),
proposed in [21], stands out.

The main contribution of this approach is the integration of Camera Motion Com-
pensation (CMC) into the tracking process. In sports broadcasts, constant camera
movement (pan, tilt, and zoom) introduces a global displacement in the image that
confounds player motion predictions. BoT-SORT utilizes image feature alignment to
calculate the homography matrix between adjacent frames, correcting bounding box
coordinates and allowing the Kalman Filter to operate on the object’s actual motion
rather than the apparent motion induced by camera movement.

Beyond CMC, the algorithm enhances data association by combining IoU (Intersec-
tion over Union) distance and cosine distance (visual re-identification) with stricter mo-
tion metrics, resulting in a significant reduction of identity switches (ID switches) and
trajectory fragmentation, essential characteristics for the continuous tactical analysis
proposed in this work.

2.2 RELATED WORK

2.2.1 Artificial Intelligence in Soccer
The application of Artificial Intelligence, and more specifically Machine Learning,

in soccer is a consolidated and rapidly expanding research field. Recent systematic
reviews, such as [22], help organize this landscape, showing that studies cluster into
three major areas: injury prediction, talent identification, and, most relevant to this work,
performance analysis.

Within performance analysis, Computer Vision has emerged as one of the most
powerful tools. The review [23] maps the vast array of applied technologies, ranging
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from event detection and player action classification [24] to tactical behavior analysis,
validating the area’s relevance and potential. To analyze the studies connecting more
directly to this work, the following discussion narrows the focus to the challenges and
applications of computer vision in extracting tactical metrics.

2.2.2 Approaches for Tactical Analysis via Computer Vision
The foundation for any automated tactical analysis from video is the ability to detect

and, crucially, track the identity of each player over time. This challenge, known as
Multi-Object Tracking (MOT), is notoriously complex in the soccer context. A funda-
mental work highlighting this complexity is [25], which introduced SoccerNet-Tracking,
a large-scale benchmark for MOT in soccer videos. The study’s conclusion was un-
equivocal: even the best algorithms of the time presented significant difficulties in sce-
narios of occlusion and rapid movement, validating that the tracking stage is, in itself,
a non-trivial engineering problem.

Once player trajectories are extracted, the literature divides into various applica-
tions. In [26], for example, the authors proposed an automated system to generate
tactical performance statistics focusing on the individual. Utilizing a CNN pipeline, the
system extracts metrics such as ball possession and pass counts, demonstrating the
feasibility of automating data collection. In contrast, the seminal work [14] focuses on
collective structure analysis, proposing an unsupervised learning method to discover
tactical formations from high-precision positional data, establishing a gold standard for
tactical analysis, albeit dependent on high-cost technology.

Looking at the research frontier, the review [27] analyzes the application of even
more advanced Deep Learning architectures, such as Transformers, to capture com-
plex spatiotemporal interactions between players. This strategically positions the present
work: focused on a fundamental problem (formation identification), utilizing robust and
accessible technologies (YOLOandDeepSORT), while cutting-edge research advances
toward predictive models of greater complexity.

2.2.3 Comparative Analysis and Gap Synthesis
The synthesis of related work, consolidated in Table 2, reveals a division in the state

of the art. On one hand, academic literature validates the technical complexity of multi-
object tracking in occlusion scenarios, frequently proposing high-complexity predictive
models requiring robust hardware. On the other, existing commercial solutions focus
primarily on individual statistics or rely on proprietary infrastructure to generate collec-
tive tactical data.
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Table 2 – Comparative Analysis of Related Work in Tactical Analysis via Computer Vision

Work Main Objective Methodology Data Source Contribution / Focus

Cioppa et al. [25] Create a benchmark
for player tracking
(MOT).

Large-scale annotation of
match videos for model
evaluation.

High-quality broadcast
videos.

Validates tracking as a
fundamental technical
challenge and provides
data to the community.

Bialkowski et al. [14] Automatically discover
tactical formations.

Unsupervised learning
(clustering).

High-precision po-
sitional data (multi-
camera systems).

Defines the gold standard
for tactical analysis, but
with high-cost and inac-
cessible technology.

Theagarajan & Bhanu [26] Automate perfor-
mance statistics
generation.

CNN pipeline for detec-
tion, tracking, and ball
possession.

Broadcast videos. Focus on individual per-
formance (passes, pos-
session), not the team’s
collective structure.

Huang et al. [27] Review the state of
the art of advanced DL
models.

Analysis of works utiliz-
ing architectures such as
Transformers.

Positional and video
data.

Points to the future of pre-
dictive analysis, highlight-
ing the complexity of fron-
tier models.

This Work Identify and analyze
tactical formations
in an automated and
accessible manner.

Computer Vision
(YOLOv8 + BoT-SORT).

Tactical camera
videos (low cost).

Focus on collective
structure, seeking tac-
tical analysis depth
with accessible and
open-source methods.

Source: The author.

It becomes evident, therefore, that there is an absence of a solution addressing a
central problem for the vast majority of clubs: the automated identification of the team’s
tactical structure without relying on wearable sensors or dedicated camera systems.
The identified gap is not merely functional, but one of accessibility. The market lacks
a tool that converts raw broadcast footage into actionable tactical intelligence, serving
as a foundation for more complex analyses.

Given this scenario, the strategic positioning of this work distinguishes itself not by
seeking absolute accuracy in laboratory conditions, but by the feasibility of implementa-
tion in resource-constrained scenarios. While elite tools (such as StatsBomb and Hudl)
impose financial and operational barriers, the proposed solution is grounded in techno-
logical democratization. The competitive differential lies in reducing operational costs
and eliminating the need for dedicated capture infrastructure, aligning directly with the
operational constraints of clubs operating outside the financial elite.
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3
METHODOLOGY

The methodological framework presented herein organizes the stages of concep-
tion, development, and validation of the proposed computational system. Priority is
placed on the technical description of the video processing pipeline, justifying the se-
lection of algorithms responsible for converting unstructured data into actionable tactical
information.

Regarding its nature, the research is classified as applied and experimental, grounded
in the engineering of a computational artifact for the automation of tactical analysis, in
accordance with the taxonomy proposed by [28]. The adopted approach is charac-
terized as mixed, combining qualitative assessments of the tracking algorithms’ visual
robustness with the quantitative measurement of the convergence rate between the
inferred tactical formation and the official nominal strategy. The experimental protocol
relied on the controlled manipulation of hyperparameters, including confidence thresh-
olds and voting windows, aiming to optimize the fidelity of the tactical representation.

To ensure scientific reproducibility and logical clarity, the chapter is organized follow-
ing the application’s data flow: it begins with the research classification and high-level
architecture, delves into detection, team segmentation, and temporal tracking tech-
niques, and culminates in the formalization of the statistical model developed for the
dynamic inference of tactical formations.

3.1 PROCESSING PIPELINE ARCHITECTURE
The system architecture follows a modular computer vision design organized into a

sequential pipeline. This separation aims to isolate the visual feature extraction stage
from the tactical inference module, ensuring decoupling between perception (vision)
and business logic (tactics). Such architecture allows for the independent adjustment
of hyperparameters for each phase, as well as facilitates the interchangeability of pre-
dictive models without requiring refactoring of the main code.

Figure 5 schematizes the data flow, starting from video input to the generation of
final reports.
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Figure 5 – Data flow and processing pipeline

Source: The author.

Processing occurs in four main stages, described below:

• Input: The input layer processes raw video files (.mp4), responsible for decoding
the video stream and converting frames into processable matrix representations;

• Detection and Tracking: In this stage, the YOLOv8n neural network integrated
with the BoT-SORT algorithm is applied. Its function is to map the spatial coordi-
nates (x, y) of players and maintain the identity consistency (ID) of each athlete
over time, mitigating failures arising from occlusions or camera movement;

• Team Classification: Once coordinates are defined, the K-Means algorithm is
executed after converting regions of interest into the CIELAB color space. The
objective is to group players by the chromatic similarity of uniforms and filter out
irrelevant elements (noise and referees);

• Tactical Inference: The final module receives the classified positional data and
applies sectoral segmentation logic. Based on the statistical distribution of players
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on the pitch, the algorithm calculates defense, midfield, and attack lines to infer
the predominant tactical formation at the analyzed instant.

As a result, the application generates two artifacts: the rendered video with visual
annotations and tactical lines, and a structured dataset containing the frequencies of
the respective detected formations.

3.2 DATA ACQUISITION AND MODEL TRAINING
For the object detection component, the YOLOv8Nano architecture was selected [17].

This choice is justified by two determining factors: first, the need to align the project with
the premise of low cost and technological democratization established in this work’s
objectives; and second, the computational resource constraints available in the devel-
opment environment (Google Colab, free tier), which would render the training of larger
models (such as Large or Extra-Large versions) infeasible in a timely manner.

The dataset used for training was obtained through the computer vision platform
Roboflow [29]. The public dataset named “Soccer Player Detection 3” [30], authored by
LightWing, composed of 9068 annotated images, was utilized. The database preserved
its original split, with 77% of samples allocated to training, 12% to validation, and 11%
to testing, ensuring the statistical integrity of the model evaluation.

Training was performed using the Transfer Learning technique, leveraging the net-
work’s pre-trained weights to accelerate convergence. It is worth noting that, although
the dataset contains annotations for four distinct classes (ball, goalkeeper, player, and
referee) and the model was trained to recognize all these objects, the application logic
developed in this work implements selective filtering at inference time. The system was
programmed to exclusively process detections with the Player label (ID 2), discarding
the other classes in post-processing to isolate the object of interest for tactical analysis.

The computational process totaled approximately 2.5 hours on GPU, resulting in a
model (file best.pt) optimized for efficient execution on conventional computers.

3.3 TEAM CLASSIFICATION ALGORITHM
Following spatial player detection, the system initiates the semantic association pro-

cess to determine to which team each individual belongs. This module operates on the
Regions of Interest (ROIs) extracted by the YOLO detector.

3.3.1 Color Space and Feature Extraction
In contrast to approaches operating in the RGB (Red-Green-Blue) color space, this

work adopted the CIELAB space. The choice is grounded in the search for perceptual
uniformity, a central objective of this model’s normalization [31].

In this space, the Euclidean distance calculated between two colors was designed
to correlate linearly with the visual difference perceived by the human eye. This charac-
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teristic gives the system greater robustness against lighting variations (such as stadium
shadows), overcoming metric distortions frequent in direct RGB analysis.

For the extraction of each athlete’s chromatic feature, a geometric cropping heuristic
was implemented. The algorithm analyzes exclusively the central 40% of the detected
bounding box height. This technique isolates the torso region, eliminating visual noise
coming from the pitch or shorts, and applies the K-Means algorithm (k = 1) on the
cropped ROI to extract the exact dominant color of that player.

3.3.2 Supervised Initialization and Classification
Unlike fully automatic methods, this system adopts an initial manual configuration

to ensure greater precision. Before video processing, the user defines the reference
colors of the uniforms (CrefA and CrefB) using the graphical interface developed with
the Streamlit library [32]. This step eliminates the need for the algorithm to “guess” the
teams, reducing initialization errors.

With reference colors defined, the system classifies each detected player (Pi) by
comparing the color extracted from their torso (CPi

) with the colors of both teams. The
decision is based on the minimum Euclidean distance (d) found, according to Equation
1:

Team(Pi) = arg,min
k∈A,B

, d(CPi
, Crefk) (1)

That is, the algorithm calculates the color difference between the player’s uniform
and the colors of teams A and B, assigning the player to the team whose color is math-
ematically closer.

3.3.3 Cardinality-Based Outlier Suppression
An inherent challenge in sports computer vision is the presence of goalkeepers and

referees, whose uniforms differ from outfield players. To mitigate erroneous classifica-
tions, a filtering algorithm based on maximum team cardinality was developed.

The system monitors the count of players assigned to each team. Given that a
team possesses at most 10 outfield players, whenever the system detects N > 10

for the same class, a suppression filter is activated. The algorithm identifies, within
the excess group, which detection has the greatest Euclidean distance relative to that
team’s reference color. This element, statistically the least similar to the uniform pattern
(likely the goalkeeper), is treated as an outlier and removed from the tactical analysis
of that frame.

3.4 TRACKING STRATEGY AND TEMPORAL STABILIZATION
The tracking stage is responsible for maintaining the identity consistency (ID) of

each player over time.
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3.4.1 Tracking with Motion Compensation
For the execution of this stage, the BoT-SORT algorithm [21] was selected. The

adoption of this specific architecture is grounded in preliminary tests performed, where
trackers based purely on Kalman Filters (such as DeepSORT [19]) exhibited identity
instability due to constant camera movement (pan and zoom) in television broadcasts,
frequently resulting in tracking loss due to inconsistent motion predictions.

Thus, the tracking module was configured to utilize BoT-SORT’s Camera Motion
Compensation (CMC). This functionality aligns adjacent frames prior to motion pre-
diction, allowing the system to isolate the athletes’ actual displacement relative to the
pitch, ensuring the necessary robustness for ID maintenance even in high-occlusion
scenarios.

3.4.2 Stabilization via Voting Window
To mitigate instability in color classification (Team A or Team B), a post-processing

step was implemented. The system stores a history of the last 15 team classifications
for each active ID. The definition of the player’s class at instant t occurs through the
calculation of the statistical mode (Mo) over this temporal buffer, according to Equation
2:

Final_Class(IDi) = Mo({Classt,Classt−1, . . . ,Classt−14}) (2)

This heuristic acts as a stability filter, eliminating momentary classification noise
(flickering) and ensuring the team’s visual cohesion throughout the trajectory.

The choice of the mode is justified by the categorical nature of the data, where
arithmetic means are not applicable. The window sizing of 15 frames was defined
through experimental tuning. During calibration tests, it was empirically observed that
this value provided the best balance for visual stability, being sufficient to suppress
classification noise without causing perceptible delays in player identity updates.

3.5 MATHEMATICAL MODELING OF TACTICAL ANALYSIS
The concluding processing phase converts raw spatial coordinates into tactical or-

ganization data. Unlike traditional approaches that project fixed zones onto the screen
(such as a static grid), the proposed methodology defines game sectors relative to
athlete positioning. Thus, the lines delimiting the defense, midfield, and attack are cal-
culated statistically at each instant, compensating for camera framing variations and
automatically adapting to team compactness.

3.5.1 Segmentation via Descriptive Statistics
Positional categorization (Defense, Midfield, Attack) is based on the distribution of

athletes along the longitudinal axis of the pitch. The algorithm calculates two metrics
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on the coordinate vector of the outfield players: the arithmetic mean (µ), which estab-
lishes the team’s geometric center, and the standard deviation (σ), used to measure
the degree of dispersion.

The thresholds delimiting the sectors are floating. The classification of a player Pi

with coordinate xi follows the decision rules expressed in Equation 3:

Sector(Pi) =


Defense, if xi < (µ− 0, 5σ)

Attack, if xi > (µ+ 0, 5σ)

Midfield, otherwise

(3)

It is noteworthy that the implementation inverts the relational operators (< and >)
according to the configured attack direction (Left → Right or vice-versa), maintaining
classification consistency regardless of the side of the pitch. The adaptation to different
filming orientations (X or Y axes) is conceptually illustrated in Figure 6.

Figure 6 – Adaptation of the statistical model according to camera orientation

Source: The author.

3.5.2 Visualization and Formation Inference
With athletes classified, the system executes grouping by sector. For the visual

representation of lines, spatial sorting on the transversal axis is used. The software
draws line segments connecting adjacent players in the sorted list, generating the visual
effect of tactical lines.

The identification of the tactical formation (e.g., “4-4-2”) adopts a deterministic ap-
proach based on cardinality. The algorithm counts the number of elements present in
each subgroup (defense, midfield, and attack) at the processed instant, inferring the
tactical structure without the need for additional predictive models.

3.6 VALIDATION METHODOLOGY
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System validation was conducted using a testing protocol aiming to simulate the
heterogeneous video conditions frequently found in real sports analyses. This protocol
ensures the scientific reproducibility of the presented results.

3.6.1 Environment Configuration and Tools
The prototype was fully implemented in Python, using the Ultralytics library as the

basis for the YOLOv8n model [17] and the Streamlit framework [32] to create the user
interface. Validation experiments were conducted in a hardware environment emulating
the capabilities of conventional analysis machines.

The system input configuration for the experiments included the following manual
variables, essential for the supervised classification stage:

• Reference Colors: Definition of average uniform colors for Teams A and B in
CIELAB space, according to the supervised initialization method detailed in Sec-
tion 3.4;

• Pitch Orientation and Attack Direction: Configuration of the longitudinal direc-
tion (Vertical or Horizontal) and attack direction (defining the inversion of relational
operators) for the correct application of the statistical model (Section 3.6).

3.6.2 Sample Selection and Characterization
The definition of the test video set was conducted intentionally and strategically.

Instead of focusing on a massive quantity of matches, priority was given to situational
variety, selecting clips representing the most common and difficult visual challenges in
computer vision applied to soccer.

Videos were obtained from TV broadcasts and publicly available tactical recordings.
This choice ensures the system is tested under real-world usage conditions, facing the
same difficulties an analyst would encounter on a day-to-day basis, rather than solely
in controlled environments.

The duration of each sample was standardized to 30 seconds. This delimitation was
necessary due to the computational cost of the tracking process. As the algorithm ana-
lyzes video frame by frame with motion compensation, processing time for longer files
would render tests unfeasible on the available hardware infrastructure. Nevertheless,
this interval proved sufficient to capture detection stability and tactical line formation
without compromising experimental agility.

Three footage types were defined for validation, as detailed in Table 3:
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Table 3 – Video Sampling (Test Set)

Scenario Description Main Challenge Duration

Scenario A Rear tactical camera (Euro
2020 - Fra vs Sui)

Perspective distortion and
players at depth (Feature
Extraction Test).

30 s

Scenario B Standard Television Broad-
cast (La Liga 2010/11 - Bar
vs Real)

Extreme lighting variation
and camera movement
(Critical CMC Test).

30 s

Scenario C Fixed Lateral Tactical Cam-
era (La Liga 2025/26 - Real
vs Bar)

Lateral occlusions and
close-up segmentation
precision test.

30 s

Source: The author.

3.6.3 Validation Method
The methodology validation was grounded in a strategy focused on the final product

of the tactical analysis. Considering that the work’s primary objective is to deliver the
reading of the team’s organization, tests concentrated on verifying the accuracy of this
inference in real-world scenarios.

The evaluation was divided into two levels:

• Qualitative Perception Assessment: A structured visual inspection of the de-
tection and tracking algorithms’ behavior across the three scenarios. The objec-
tive is to identify stability patterns and limitations in stress situations (rapid move-
ment and occlusions), qualifying the system’s robustness without the need for
granular failure quantification;

• Tactical Inference Validation (Quantitative): The objective assessment of the
system’s capacity to identify the team’s predominant formation. The system pro-
cessed the clips in their entirety, and the detected formation was compared against
the official strategy (coach’s lineup) to determine the result’s convergence.
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4
RESULTS AND DISCUSSION

This chapter details the experimental validation of the computer vision system. While
Chapter 3 established the engineering architecture and algorithmic decisions, this sec-
tion focuses on demonstrating, quantitatively and qualitatively, the solution’s perfor-
mance.

The evaluation was structured to verify the achievement of the work’s objectives
under three fundamental pillars:

• Perception Accuracy: The system’s robustness in correctly detecting, tracking,
and classifying outfield players, ensuring precise team segregation;

• Tactical Inference Fidelity: The mathematical model’s accuracy in identifying
instantaneous (momentary) tactical formations, attesting to the validity of the sta-
tistical segmentation;

• Practical Utility: The system’s potential to provide actionable information quickly
and intuitively, optimizing the performance analyst’s workflow within a low-cost
solution context.

In this sense, the discussion of results is organized as follows: Section 4.1 presents
the Qualitative Analysis of Visual Perception, discussing the stability of detection and
tracking algorithms in test scenarios. Section 4.2 is dedicated to Tactical Inference
Validation, comparing the formations identified by the system with the teams’ nominal
strategies. Finally, Section 4.3 addresses the Study Limitations and observed technical
constraints, pointing out directions for future work.

4.1 QUALITATIVE ANALYSIS OF VISUAL PERCEPTION
Prior to assessing the final tactical formation, a qualitative analysis of the perfor-

mance of the perception subsystems (detection and tracking) was conducted to under-
stand how video and uniform characteristics influence system stability.

In Scenario A (Rear Tactical Camera – Euro 2020), a significant performance dis-
parity between the teams was observed. The system demonstrated high visual stability
for the French team (blue uniform), maintaining ID consistency and color classification
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for most of the time, a factor favored by the tactical camera’s stability. Conversely, crit-
ical failures were observed in detecting the Swiss team (white uniform). As evidenced
in Table 4, the quantity of valid detections for this team was insufficient to feed the
statistical model, rendering the inference of its tactical formation impossible.

In Scenario B (Broadcast with Zoom – La Liga 2010/11), the BoT-SORT algorithm
was subjected to the motion compensation test. Visually, the tracker’s robustness in
maintaining bounding boxes over detected targets was confirmed, even during rapid
lateral camera movements (pan). However, selective degradation was noted again:
the detection of the Real Madrid team (white uniform) was visibly inferior to that of
Barcelona, generating insufficient data for the tactical inference of the Madrid team.
For the Barcelona team, formation inference occurred, but oscillations were observed
in the assignment of tactical roles (Defense/Midfield/Attack). These variations suggest
a sensitivity of the positional categorization algorithm to spatial coordinate instabilities, a
phenomenon appearing to be accentuated by the constant movement of the broadcast
camera.

Finally, Scenario C (Lateral with Shadows – La Liga 2024/25) presented the high-
est overall perception effectiveness. Unlike the previous cases, the system succeeded
in detecting and tracking both teams, including the one with the white uniform, allow-
ing for bilateral tactical inference. However, formation validation in this scenario faced
challenges of a different nature: the players’ positional dynamicity and the sample’s
restricted time window hindered convergence toward the static nominal formation, re-
sulting in a reading that reflects the momentary transition more than the team’s standard
structure.

4.2 TACTICAL INFERENCE VALIDATION
Following the perception analysis, this section is dedicated to the validation of the

dynamic sectoral segmentation model (Section 3.6). The objective is to verify whether
the application of statistical decision rules (µ ± 0.5σ) on player coordinates results in
the correct identification of the team’s organizational structure.

For this experiment, the predominant tactical formation (the configuration detected
with the highest temporal frequency during the 30-second clip) was compared with
the nominal strategy defined by the coaching staff for the respective match. Official
lineups were obtained from ESPN and Transfermarkt databases. Table 4 presents the
comparative results.
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Table 4 – Comparison of formations inferred by the system

Scenario Team Nominal Inferred (Freq.) Correspondence

A France (Euro 2020) 3-4-1-2 3-3-4 (19.4%) Compatible

A Switzerland (Euro 2020) 3-4-1-2 Insuff. Detection Insufficient

B Barcelona (2011) 4-3-3 4-3-3 (13.1%) Exact

B Real Madrid (2011) 4-2-3-1 Insuff. Detection Insufficient

C Barcelona (2025) 4-2-3-1 4-2-3 (18.8%) Incomplete

C Real Madrid (2025) 4-1-4-1 4-3-3 (28.2%) Tactical Variation

Source: The author with data from ESPN [33,34] and Transfermarkt [35].

The analysis of results requires a contextualized interpretation of the nature of soc-
cer and the challenges of computer vision. In cases where there was exact correspon-
dence, such as in Scenario B (Barcelona 2011), the system demonstrated high fidelity
in identifying the classic 4-3-3.

However, in the same scenario, the Real Madrid team presented insufficient results.
Visual analysis suggests that the low contrast between the white uniform and the bright
elements of the environment may have hindered feature extraction by the detector. It
was observed that, in moments of higher light incidence, the athletes’ edges become
less distinguishable, which is consistent with detection failures in low dynamic range
scenarios, as illustrated in Figure 7.

Figure 7 – Visualization of Real Madrid’s inconclusive detection (Scenario B)

Source: The author, based on La Liga broadcast.
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A specific point of attention refers to the interpretation of formations with four func-
tional lines, such as France’s 3-4-1-2 in Scenario A. Figure 8 demonstrates that the
algorithm correctly identified the defensive base of three defenders. The variation oc-
curred in the offensive distribution. The predominant inference of a 3-3-4 suggests that
the advanced positioning of the wing-backs and the attacking midfielder exceeded the
statistical threshold of the midfield sector, being interpreted by the algorithm as pres-
ence in the attack sector. This behavior preserves the team’s base structure, justifying
the classification of the result as compatible.

Figure 8 – Detection of tactical formation in defensive moment (Scenario A)

Source: The author, based on RaiPlay broadcast.

Finally, Scenario C (Real Madrid 2025) illustrates the system’s capacity to reveal
game dynamics. Although the nominal formation was a 4-1-4-1, the system captured
the team’s offensive reorganization. The inference of a 4-3-3 (28.2% frequency) reflects
the moment where wide midfielders push to the attack line and the defensive midfielder
aligns with the central midfielders. Figure 9 displays this transition, with the advanced
occupation of the lateral corridors.
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Figure 9 – Detection of Real Madrid’s offensive dynamics (Scenario C)

Source: The author, based on La Liga broadcast.

This discrepancy reinforces the tool’s practical utility for performance analysis. The
system recorded the athletes effective positioning during the offensive phase, highlight-
ing the difference between the dynamic organization on the pitch and the static nominal
formation disclosed in the match sheet.

4.3 STUDY LIMITATIONS AND TECHNICAL CONSTRAINTS
The experimental validation confirmed the prototype’s functional viability for auto-

mated tactical analysis. However, tests also evidenced technical bottlenecks stem-
ming from design choices aimed at low cost and hardware constraints. This section
discusses the main challenges faced in the current implementation.

4.3.1 Sensitivity of the YOLOv8 Nano Architecture
The main qualitative limitation observed in the results stems from the choice of the

YOLOv8 Nano model [17]. Although this version is optimized for execution in resource-
constrained environments (such as cloud service free tiers), its reduced parameter den-
sity imposes a trade-off between efficiency and sensitivity (Recall).

This sensitivity restriction manifested critically regarding contrast and luminance.
In the conducted experiments, specifically in Scenarios A and B, a degradation was
noted in the detection rate of players with white uniforms when exposed to conditions
of high solar incidence. This phenomenon is consistent with the loss of texture and
edge information caused by pixel saturation in broadcast images. The implemented
pipeline, by processing frames directly without histogram equalization or local contrast
enhancement steps, became susceptible to this visual camouflage, hindering feature
extraction by the model in high-luminosity zones.

It was also observed that, in wide shot scenarios (Scenario A), the instability of
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the detected tactical formations was not caused by a failure in the statistical logic, but
rather by the primary non-detection of distant players. The Nano model tends to ignore
small objects (few pixels in height), generating momentary gaps in data collection that
affect the calculation of the team’s positional mean. The use of more robust architec-
tures, such as YOLOv8 Large, would mitigate this problem, although it would require
dedicated hardware incompatible with this work’s accessibility premise.

4.3.2 Processing Latency and Temporal Viability
Although the system operates with a lightweight detection model, the computational

cost of tracking proved to be a limiting factor. The combination of the BoT-SORT algo-
rithm (which performs frame-by-frame image alignment for motion compensation) with
neural network inference generated significant accumulated latency.

In the tests performed, the processing time for short 30-second videos exceeded
real-time playback time, highlighting that the solution, on the current infrastructure, is
strictly oriented towards post-match analysis (offline). To enable the tool’s use during
the match (live tagging), migration to an environment with high-performance local GPU
acceleration would be mandatory, eliminating the processing bottleneck that currently
limits the experience on conventional personal computers.
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5
CONCLUSION

This work addressed the challenge of technological accessibility in sports perfor-
mance analysis, proposing an engineering solution capable of automating the extrac-
tion of tactical intelligence from television broadcast videos. The research’s central mo-
tivation was grounded in the premise that the application of modern Computer Vision
techniques, when optimized for resource-constrained scenarios, can act as a vector for
democratization in soccer, reducing the technical gap between elite clubs and teams
with lower investment capacity.

Revisiting the general objective established at the beginning of this study, it is con-
cluded that the goal of developing and validating amethodology for mapping tactical for-
mations was achieved. The constructed computational artifact demonstrated technical
viability by processing unstructured video streams and converting them, autonomously,
into structured representations of the teams’ spatial organization. The successful inte-
gration of detection, tracking, and statistical modeling algorithms proved that it is pos-
sible to extract high-level metrics without mandatory reliance on proprietary hardware
or multi-million dollar optical tracking systems.

However, experimental validation also revealed that the pursuit of low cost imposes
technical trade-offs. The choice of lightweight models and the reliance on color heuris-
tics restrict the current solution’s applicability to controlled lighting conditions and re-
quire human supervision during initial configuration, characterizing the system as a
semi-automatic support tool rather than a fully autonomous one.

5.1 SYNTHESIS OF CONTRIBUTIONS
The primary academic and technical contribution of this work lies in the architecture

of the proposed processing pipeline. The combination, in this specific context, of the
BoT-SORT tracker with the voting window proved to be a robust response to the chal-
lenges imposed by camera movement in TV broadcasts. Where conventional trackers
failed due to the loss of linearity in motion, the developed solution maintained the cohe-
sion of visual identities, proving that camera motion compensation is an indispensable
technical condition for broadcast-based tactical analysis software.

Another relevant contribution was the implementation of domain heuristics for visual
data refinement. The application of cardinality filters (limiting detection to 10 outfield
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players) and outlier suppression based on chromatic distance proved essential to miti-
gate failures inherent to detection models, eliminating noise such as goalkeepers and
referees. This hybrid approach, combining AI probability with the sport’s deterministic
rules, was decisive in ensuring tactical data integrity.

Finally, the mathematical condition of dynamic sectoral segmentation presented it-
self as an effective alternative to static grid methods. By utilizing the statistical disper-
sion (standard deviation) of the athletes themselves to define defense and attack lines,
the algorithm endowed the system with an adaptive capacity, allowing for correct tac-
tical interpretation regardless of the team’s compactness level or the zoom applied by
the broadcast.

5.2 FUTURE WORK
The development of this study has opened new avenues of investigation for the

enhancement of automated tactical analysis. As an immediate evolution, the replace-
ment of the YOLOv8 Nano detection model with larger architectures, such as the Large
versions or Transformer-based models, is suggested. This aims to mitigate detection
failures in wide shots, even if it demands migration to dedicated cloud processing in-
frastructures.

In the future, the application of perspective transformation algorithms to generate a
top-down view of the pitch presents itself as the logical next step. The ability to project
player coordinates onto a two-dimensional map would allow not only for more precise
positional analysis but also enable the calculation of advanced metrics such as Pitch
Control, heatmaps, and passing networks. Finally, the integration of Re-Identification
(ReID) models based on deep features, replacing color clustering, would drastically re-
duce the dependence on manual inputs, paving the way for a fully autonomous tactical
analysis system resilient to lighting variations.
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Appendix A - Interface and Tests

Figure 10 – Interface

Source: The author.

Figure 11 – Switzerland detection (Scenario A)

Source: The author.
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Figure 12 – Barcelona detection (Scenario C)

Source: The author.
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Appendix B - Interview

Participant: Performance Analyst at Capital FC.
Methodology: Semi-structured interview via audio recordings.
Collection date: May 29, 2025

1. What are the department’s main needs and deadlines?
The analyst reported a scarcity of information available regarding the Série D and the

local championship (Candangão). The restriction of human resources was highlighted,
with only one professional in the department, creating difficulties for the manual search
of information. The immediate need for technologies that facilitate player scouting was
expressed to optimize work time.

2. How do current data collection processes work?
Currently, there is no data collection process focused on tactical performance. The

only use of structured data is restricted to the physiological aspect (load and injury
prevention) via GPS. It was reported that previous attempts at technological implemen-
tation to aid recruitment failed due to low reliability in the available data.

3. What are the tactical analysis method and tools used?
The Nacsport software is used, although the analyst is knowledgeable about so-

lutions such as Hudl. The routine is based on watching three opponent matches to
identify behavioral patterns (home, away, and after substitutions). The process relies
heavily on the manual tagging function to detect offensive and defensive patterns, and
set-pieces.

4. Which metrics (KPIs) are used for evaluation?
In the individual scope, analysis is based on the player’s position to identify improve-

ments in positioning and reaction. In the collective scope, specific statistics demanded
by the coach are used, highlighting the frequency of team entries into the final third of
the pitch and the identification of the corridors where plays occur.
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